Suppr超能文献

运动持续时间、菲茨定律和生物运动系统的无限时域最优反馈控制模型。

Movement duration, Fitts's law, and an infinite-horizon optimal feedback control model for biological motor systems.

机构信息

Department of Neuroscience, and Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.

出版信息

Neural Comput. 2013 Mar;25(3):697-724. doi: 10.1162/NECO_a_00410. Epub 2012 Dec 28.

Abstract

Optimization models explain many aspects of biological goal-directed movements. However, most such models use a finite-horizon formulation, which requires a prefixed movement duration to define a cost function and solve the optimization problem. To predict movement duration, these models have to be run multiple times with different prefixed durations until an appropriate duration is found by trial and error. The constrained minimum time model directly predicts movement duration; however, it does not consider sensory feedback and is thus applicable only to open-loop movements. To address these problems, we analyzed and simulated an infinite-horizon optimal feedback control model, with linear plants, that contains both control-dependent and control-independent noise and optimizes steady-state accuracy and energetic costs per unit time. The model applies the steady-state estimator and controller continuously to guide an effector to, and keep it at, target position. As such, it integrates movement control and posture maintenance without artificially dividing them with a precise, prefixed time boundary. Movement pace is determined by the model parameters, and the duration is an emergent property with trial-to-trial variability. By considering the mean duration, we derived both the log and power forms of Fitts's law as different approximations of the model. Moreover, the model reproduces typically observed velocity profiles and occasional transient overshoots. For unbiased sensory feedback, the effector reaches the target without bias, in contrast to finite-horizon models that systematically undershoot target when energetic cost is considered. Finally, the model does not involve backward and forward sweeps in time, its stability is easily checked, and the same solution applies to movements of different initial conditions and distances. We argue that biological systems could use steady-state solutions as default control mechanisms and might seek additional optimization of transient costs when justified or demanded by task or context.

摘要

优化模型解释了许多生物有目标导向运动的方面。然而,大多数这样的模型都使用有限的时间格式,这需要一个预设的运动持续时间来定义成本函数并解决优化问题。为了预测运动的持续时间,这些模型必须使用不同的预设持续时间多次运行,直到通过试错找到合适的持续时间。受约束的最小时间模型直接预测运动的持续时间;然而,它不考虑感官反馈,因此仅适用于开环运动。为了解决这些问题,我们分析和模拟了一个具有线性植物的无限时间最优反馈控制模型,其中包含控制相关和控制无关的噪声,并优化了稳态精度和单位时间内的能量成本。该模型连续应用稳态估计器和控制器来引导效应器到达并保持在目标位置。因此,它整合了运动控制和姿势维持,而无需通过精确的、预设的时间边界人为地将它们分开。运动节奏由模型参数决定,持续时间是具有试验间可变性的突发属性。通过考虑平均持续时间,我们得出了菲茨定律的对数和幂形式,作为模型的不同近似形式。此外,该模型再现了通常观察到的速度曲线和偶尔的瞬态过冲。对于无偏差的感官反馈,效应器到达目标时没有偏差,与考虑能量成本时有限时间模型系统地低于目标的情况形成对比。最后,该模型不涉及时间上的回溯和前扫,其稳定性很容易检查,相同的解决方案适用于不同初始条件和距离的运动。我们认为,生物系统可以使用稳态解作为默认控制机制,并且在任务或环境需要时,可以寻求对瞬态成本的额外优化。

相似文献

1
Movement duration, Fitts's law, and an infinite-horizon optimal feedback control model for biological motor systems.
Neural Comput. 2013 Mar;25(3):697-724. doi: 10.1162/NECO_a_00410. Epub 2012 Dec 28.
2
Target-directed movements at a comfortable pace: movement duration and Fitts's law.
J Mot Behav. 2009 Jul;41(4):339-46. doi: 10.3200/JMBR.41.4.339-346.
3
An optimization principle for determining movement duration.
J Neurophysiol. 2006 Jun;95(6):3875-86. doi: 10.1152/jn.00751.2005. Epub 2006 Mar 29.
4
Fitts's Law violation and motor imagery: are imagined movements truthful or lawful?
Exp Brain Res. 2010 Mar;201(3):607-11. doi: 10.1007/s00221-009-2072-2. Epub 2009 Nov 11.
5
Fitts's Law using lower extremity movement: Performance driven outcomes for degenerative lumbar spinal stenosis.
Hum Mov Sci. 2015 Dec;44:277-86. doi: 10.1016/j.humov.2015.09.010. Epub 2015 Oct 2.
6
Computational motor control: feedback and accuracy.
Eur J Neurosci. 2008 Feb;27(4):1003-16. doi: 10.1111/j.1460-9568.2008.06028.x. Epub 2008 Feb 13.
7
A Single, Continuously Applied Control Policy for Modeling Reaching Movements with and without Perturbation.
Neural Comput. 2018 Feb;30(2):397-427. doi: 10.1162/neco_a_01040. Epub 2017 Nov 21.
8
EEG correlates of Fitts's law during preparation for action.
Psychol Res. 2012 Jul;76(4):514-24. doi: 10.1007/s00426-012-0418-z. Epub 2012 Feb 5.
9
Modulating Fitts's Law: the effect of disappearing allocentric information.
Exp Brain Res. 2009 Apr;194(4):571-6. doi: 10.1007/s00221-009-1733-5. Epub 2009 Feb 25.
10
Empirical Movement Models for Brain Computer Interfaces.
IEEE Trans Neural Syst Rehabil Eng. 2017 Jun;25(6):694-703. doi: 10.1109/TNSRE.2016.2584101. Epub 2016 Jun 30.

引用本文的文献

1
Disentangling the effects of metabolic cost and accuracy on movement speed.
PLoS Comput Biol. 2024 May 31;20(5):e1012169. doi: 10.1371/journal.pcbi.1012169. eCollection 2024 May.
2
Continuous evaluation of cost-to-go for flexible reaching control and online decisions.
PLoS Comput Biol. 2023 Sep 27;19(9):e1011493. doi: 10.1371/journal.pcbi.1011493. eCollection 2023 Sep.
3
Using metabolic energy to quantify the subjective value of physical effort.
J R Soc Interface. 2021 Jul;18(180):20210387. doi: 10.1098/rsif.2021.0387. Epub 2021 Jul 21.
4
Reinforcement learning control of a biomechanical model of the upper extremity.
Sci Rep. 2021 Jul 14;11(1):14445. doi: 10.1038/s41598-021-93760-1.
5
Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision.
PLoS Comput Biol. 2021 Jun 11;17(6):e1009047. doi: 10.1371/journal.pcbi.1009047. eCollection 2021 Jun.
6
A feedback information-theoretic transmission scheme (FITTS) for modeling trajectory variability in aimed movements.
Biol Cybern. 2020 Dec;114(6):621-641. doi: 10.1007/s00422-020-00853-7. Epub 2020 Dec 8.
7
Time-to-Target Simplifies Optimal Control of Visuomotor Feedback Responses.
eNeuro. 2020 Apr 24;7(2). doi: 10.1523/ENEURO.0514-19.2020. Print 2020 Mar/Apr.
8
Unifying Speed-Accuracy Trade-Off and Cost-Benefit Trade-Off in Human Reaching Movements.
Front Hum Neurosci. 2017 Dec 19;11:615. doi: 10.3389/fnhum.2017.00615. eCollection 2017.
9
Effect of Position- and Velocity-Dependent Forces on Reaching Movements at Different Speeds.
Front Hum Neurosci. 2016 Nov 29;10:609. doi: 10.3389/fnhum.2016.00609. eCollection 2016.
10
Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering.
PLoS Comput Biol. 2016 Apr 1;12(4):e1004730. doi: 10.1371/journal.pcbi.1004730. eCollection 2016 Apr.

本文引用的文献

1
The central nervous system does not minimize energy cost in arm movements.
J Neurophysiol. 2010 Dec;104(6):2985-94. doi: 10.1152/jn.00483.2010. Epub 2010 Sep 8.
2
The coordination of movement: optimal feedback control and beyond.
Trends Cogn Sci. 2010 Jan;14(1):31-9. doi: 10.1016/j.tics.2009.11.004. Epub 2009 Dec 11.
3
The intrinsic value of visual information affects saccade velocities.
Exp Brain Res. 2009 Jul;196(4):475-81. doi: 10.1007/s00221-009-1879-1. Epub 2009 Jun 14.
4
The equilibrium-point hypothesis--past, present and future.
Adv Exp Med Biol. 2009;629:699-726. doi: 10.1007/978-0-387-77064-2_38.
5
Parabolic movement primitives and cortical states: merging optimality with geometric invariance.
Biol Cybern. 2009 Feb;100(2):159-84. doi: 10.1007/s00422-008-0287-0. Epub 2009 Jan 17.
6
Computational motor control: feedback and accuracy.
Eur J Neurosci. 2008 Feb;27(4):1003-16. doi: 10.1111/j.1460-9568.2008.06028.x. Epub 2008 Feb 13.
7
Evidence for the flexible sensorimotor strategies predicted by optimal feedback control.
J Neurosci. 2007 Aug 29;27(35):9354-68. doi: 10.1523/JNEUROSCI.1110-06.2007.
8
Why don't we move faster? Parkinson's disease, movement vigor, and implicit motivation.
J Neurosci. 2007 Jul 4;27(27):7105-16. doi: 10.1523/JNEUROSCI.0264-07.2007.
9
An optimization principle for determining movement duration.
J Neurophysiol. 2006 Jun;95(6):3875-86. doi: 10.1152/jn.00751.2005. Epub 2006 Mar 29.
10
The main sequence of saccades optimizes speed-accuracy trade-off.
Biol Cybern. 2006 Jul;95(1):21-9. doi: 10.1007/s00422-006-0064-x. Epub 2006 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验