IEEE Trans Med Imaging. 2022 Mar;41(3):690-701. doi: 10.1109/TMI.2021.3123567. Epub 2022 Mar 2.
Segmentation is a fundamental task in biomedical image analysis. Unlike the existing region-based dense pixel classification methods or boundary-based polygon regression methods, we build a novel graph neural network (GNN) based deep learning framework with multiple graph reasoning modules to explicitly leverage both region and boundary features in an end-to-end manner. The mechanism extracts discriminative region and boundary features, referred to as initialized region and boundary node embeddings, using a proposed Attention Enhancement Module (AEM). The weighted links between cross-domain nodes (region and boundary feature domains) in each graph are defined in a data-dependent way, which retains both global and local cross-node relationships. The iterative message aggregation and node update mechanism can enhance the interaction between each graph reasoning module's global semantic information and local spatial characteristics. Our model, in particular, is capable of concurrently addressing region and boundary feature reasoning and aggregation at several different feature levels due to the proposed multi-level feature node embeddings in different parallel graph reasoning modules. Experiments on two types of challenging datasets demonstrate that our method outperforms state-of-the-art approaches for segmentation of polyps in colonoscopy images and of the optic disc and optic cup in colour fundus images. The trained models will be made available at: https://github.com/smallmax00/Graph_Region_Boudnary.
分割是生物医学图像分析中的一项基本任务。与现有的基于区域的密集像素分类方法或基于边界的多边形回归方法不同,我们构建了一个新的基于图神经网络(GNN)的深度学习框架,具有多个图推理模块,以端到端的方式显式利用区域和边界特征。该机制使用提出的注意力增强模块(AEM)提取有区别的区域和边界特征,称为初始化区域和边界节点嵌入。在每个图中,跨域节点(区域和边界特征域)之间的加权链接以数据依赖的方式定义,保留了全局和局部跨节点关系。迭代消息聚合和节点更新机制可以增强每个图推理模块的全局语义信息和局部空间特征之间的交互。我们的模型特别能够同时解决几个不同特征层次的区域和边界特征推理和聚合问题,这是由于在不同的并行图推理模块中提出了多级特征节点嵌入。在两种具有挑战性的数据集上的实验表明,我们的方法在结肠镜图像中的息肉分割和彩色眼底图像中的视盘和视杯分割方面优于最先进的方法。训练好的模型将在:https://github.com/smallmax00/Graph_Region_Boudnary 上提供。