Suppr超能文献

AGRNet:用于人脸解析的自适应图表示学习和推理。

AGRNet: Adaptive Graph Representation Learning and Reasoning for Face Parsing.

出版信息

IEEE Trans Image Process. 2021;30:8236-8250. doi: 10.1109/TIP.2021.3113780. Epub 2021 Sep 30.

Abstract

Face parsing infers a pixel-wise label to each facial component, which has drawn much attention recently. Previous methods have shown their success in face parsing, which however overlook the correlation among facial components. As a matter of fact, the component-wise relationship is a critical clue in discriminating ambiguous pixels in facial area. To address this issue, we propose adaptive graph representation learning and reasoning over facial components, aiming to learn representative vertices that describe each component, exploit the component-wise relationship and thereby produce accurate parsing results against ambiguity. In particular, we devise an adaptive and differentiable graph abstraction method to represent the components on a graph via pixel-to-vertex projection under the initial condition of a predicted parsing map, where pixel features within a certain facial region are aggregated onto a vertex. Further, we explicitly incorporate the image edge as a prior in the model, which helps to discriminate edge and non-edge pixels during the projection, thus leading to refined parsing results along the edges. Then, our model learns and reasons over the relations among components by propagating information across vertices on the graph. Finally, the refined vertex features are projected back to pixel grids for the prediction of the final parsing map. To train our model, we propose a discriminative loss to penalize small distances between vertices in the feature space, which leads to distinct vertices with strong semantics. Experimental results show the superior performance of the proposed model on multiple face parsing datasets, along with the validation on the human parsing task to demonstrate the generalizability of our model.

摘要

人脸解析推断出每个面部组件的像素级标签,这在最近引起了广泛关注。以前的方法已经在人脸解析中取得了成功,但它们忽略了面部组件之间的相关性。事实上,组件之间的关系是区分面部区域中模糊像素的关键线索。为了解决这个问题,我们提出了自适应图表示学习和推理方法,旨在学习描述每个组件的有代表性的顶点,利用组件之间的关系,从而产生针对模糊性的准确解析结果。具体来说,我们设计了一种自适应和可区分的图抽象方法,通过在预测解析图的初始条件下将像素到顶点的投影,在图上表示组件,其中某个面部区域内的像素特征被聚合到一个顶点上。此外,我们明确地将图像边缘作为模型中的先验信息,这有助于在投影过程中区分边缘和非边缘像素,从而在边缘处得到更精细的解析结果。然后,我们的模型通过在图上的顶点之间传播信息来学习和推理组件之间的关系。最后,将细化后的顶点特征投影回像素网格,以预测最终的解析图。为了训练我们的模型,我们提出了一种判别损失,以惩罚特征空间中顶点之间的小距离,从而得到具有强语义的独特顶点。实验结果表明,该模型在多个人脸解析数据集上的性能优越,并在人类解析任务上进行了验证,证明了我们模型的泛化能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验