Department of Physics, University of Toronto, Toronto, Ontario, Canada.
Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.
PLoS Comput Biol. 2020 Dec 8;16(12):e1008479. doi: 10.1371/journal.pcbi.1008479. eCollection 2020 Dec.
Single-molecule localization microscopy (SMLM) is a powerful tool for studying intracellular structure and macromolecular organization at the nanoscale. The increasingly massive pointillistic data sets generated by SMLM require the development of new and highly efficient quantification tools. Here we present FOCAL3D, an accurate, flexible and exceedingly fast (scaling linearly with the number of localizations) density-based algorithm for quantifying spatial clustering in large 3D SMLM data sets. Unlike DBSCAN, which is perhaps the most commonly employed density-based clustering algorithm, an optimum set of parameters for FOCAL3D may be objectively determined. We initially validate the performance of FOCAL3D on simulated datasets at varying noise levels and for a range of cluster sizes. These simulated datasets are used to illustrate the parametric insensitivity of the algorithm, in contrast to DBSCAN, and clustering metrics such as the F1 and Silhouette score indicate that FOCAL3D is highly accurate, even in the presence of significant background noise and mixed populations of variable sized clusters, once optimized. We then apply FOCAL3D to 3D astigmatic dSTORM images of the nuclear pore complex (NPC) in human osteosaracoma cells, illustrating both the validity of the parameter optimization and the ability of the algorithm to accurately cluster complex, heterogeneous 3D clusters in a biological dataset. FOCAL3D is provided as an open source software package written in Python.
单分子定位显微镜 (SMLM) 是研究细胞内结构和大分子组织的纳米尺度的强大工具。SMLM 生成的越来越大量的点状数据集需要开发新的和高效的定量工具。在这里,我们提出了 FOCAL3D,这是一种准确、灵活和非常快速的(与定位点数量呈线性比例)基于密度的算法,用于定量分析大型 3D SMLM 数据集的空间聚类。与可能是最常用的基于密度的聚类算法 DBSCAN 不同,FOCAL3D 的最佳参数集可以客观确定。我们最初在不同噪声水平和一系列聚类大小的模拟数据集上验证 FOCAL3D 的性能。这些模拟数据集用于说明与 DBSCAN 相比,算法的参数不敏感性,聚类指标,如 F1 和 Silhouette 得分表明,FOCAL3D 非常准确,即使存在显著的背景噪声和大小可变的混合群体聚类,一旦优化。然后,我们将 FOCAL3D 应用于人类骨肉瘤细胞中核孔复合体 (NPC) 的 3D 像散 dSTORM 图像,说明了参数优化的有效性以及算法在生物数据集准确聚类复杂、异质 3D 聚类的能力。FOCAL3D 作为一个用 Python 编写的开源软件包提供。