Kirchner Moritz A, El Khoury Jessica, Barras Frédéric, Kleman Jean-Philippe, Gutsche Irina
Institut de Biologie Structurale, CEA, CNRS UMR5075, Univ Grenoble Alpes, Grenoble, France.
Department of Microbiology, Institut Pasteur, Université de Paris, CNRS UMR6047, Stress Adaptation and Metabolism Unit, Paris, France.
Commun Biol. 2025 Aug 6;8(1):1168. doi: 10.1038/s42003-025-08616-5.
Bacteria use sophisticated acid stress response strategies to withstand fluctuating environmental pH, with enterobacterial inducible amino acid decarboxylases playing a major role. The lysine decarboxylase LdcI catalyses lysine-to-cadaverine conversion coupled to proton consumption and carbon dioxide release, thereby buffering cytoplasmic and extracellular pH. Our previous studies showed that Escherichia coli LdcI forms intracellular patches under mild acid stress, and that purified LdcI polymerises into filaments at acidic pH. Here, we investigated the physiological relevance of LdcI filamentation using 3D super-resolution microscopy and an LdcI polymerisation-deficient E. coli mutant strain. We established a semi-automated workflow for intracellular cluster detection and quantitative analysis, and demonstrated predominantly peripheral clustering of LdcI. Disrupting LdcI polymerisation markedly reduced cluster size without significantly affecting localisation, suggesting that clustering is driven by filamentation. Growth and pH measurements revealed that the mutant exhibits reduced fitness and impaired extracellular buffering compared to the wild type, indicating that LdcI polymerisation enhances the E. coli capacity to counteract acid stress without affecting intracellular location of the enzyme. Our findings provide strong evidence that LdcI filamentation regulates acid stress response by spatially optimising enzymatic activity. More broadly, this work supports the functional significance of metabolic enzyme self-assembly in bacterial stress adaptation.
细菌利用复杂的酸应激反应策略来抵御波动的环境pH值,其中肠杆菌诱导型氨基酸脱羧酶起着主要作用。赖氨酸脱羧酶LdcI催化赖氨酸向尸胺的转化,同时消耗质子并释放二氧化碳,从而缓冲细胞质和细胞外的pH值。我们之前的研究表明,大肠杆菌LdcI在轻度酸应激下形成细胞内斑块,并且纯化的LdcI在酸性pH值下聚合成细丝。在这里,我们使用三维超分辨率显微镜和LdcI聚合缺陷型大肠杆菌突变菌株研究了LdcI丝状化的生理相关性。我们建立了一种用于细胞内簇检测和定量分析的半自动工作流程,并证明LdcI主要在外围聚集。破坏LdcI聚合显著减小了簇的大小,但对其定位没有显著影响,这表明聚集是由丝状化驱动的。生长和pH测量表明,与野生型相比,突变体的适应性降低且细胞外缓冲能力受损,这表明LdcI聚合增强了大肠杆菌抵抗酸应激的能力,而不影响该酶在细胞内的定位。我们的研究结果提供了强有力的证据,表明LdcI丝状化通过在空间上优化酶活性来调节酸应激反应。更广泛地说,这项工作支持了代谢酶自组装在细菌应激适应中的功能意义。