纳米分辨率荧光分子的成像和跟踪,使用最小的光子通量。

Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes.

机构信息

Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.

Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.

出版信息

Science. 2017 Feb 10;355(6325):606-612. doi: 10.1126/science.aak9913. Epub 2016 Dec 22.

Abstract

We introduce MINFLUX, a concept for localizing photon emitters in space. By probing the emitter with a local intensity minimum of excitation light, MINFLUX minimizes the fluorescence photons needed for high localization precision. In our experiments, 22 times fewer fluorescence photons are required as compared to popular centroid localization. In superresolution microscopy, MINFLUX attained ~1-nm precision, resolving molecules only 6 nanometers apart. MINFLUX tracking of single fluorescent proteins increased the temporal resolution and the number of localizations per trace by a factor of 100, as demonstrated with diffusing 30 ribosomal subunits in living As conceptual limits have not been reached, we expect this localization modality to break new ground for observing the dynamics, distribution, and structure of macromolecules in living cells and beyond.

摘要

我们提出了 MINFLUX 这一概念,用于对空间中的光子发射器进行定位。通过用局部光强最小化的激发光探测发射器,MINFLUX 最小化了实现高精度定位所需的荧光光子数量。在我们的实验中,与流行的质心定位方法相比,所需的荧光光子数量减少了 22 倍。在超分辨率显微镜中,MINFLUX 达到了约 1nm 的精度,能够分辨出仅相隔 6 纳米的分子。MINFLUX 对单个荧光蛋白的追踪将时间分辨率和每个轨迹的定位数量提高了 100 倍,这在对活体中扩散的 30 个核糖体亚基的实验中得到了验证。由于尚未达到概念极限,我们预计这种定位方式将为观察活细胞内外的生物大分子的动态、分布和结构开辟新的道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索