Clem Jones Centre for Ageing Dementia Research, Queesnsland Brain Institute, The University of Queensland, Brisbane, Australia.
Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.
PLoS Comput Biol. 2020 Dec 8;16(12):e1008461. doi: 10.1371/journal.pcbi.1008461. eCollection 2020 Dec.
The entry of SARS-CoV-2 into target cells requires the activation of its surface spike protein, S, by host proteases. The host serine protease TMPRSS2 and cysteine proteases Cathepsin B/L can activate S, making two independent entry pathways accessible to SARS-CoV-2. Blocking the proteases prevents SARS-CoV-2 entry in vitro. This blockade may be achieved in vivo through 'repurposing' drugs, a potential treatment option for COVID-19 that is now in clinical trials. Here, we found, surprisingly, that drugs targeting the two pathways, although independent, could display strong synergy in blocking virus entry. We predicted this synergy first using a mathematical model of SARS-CoV-2 entry and dynamics in vitro. The model considered the two pathways explicitly, let the entry efficiency through a pathway depend on the corresponding protease expression level, which varied across cells, and let inhibitors compromise the efficiency in a dose-dependent manner. The synergy predicted was novel and arose from effects of the drugs at both the single cell and the cell population levels. Validating our predictions, available in vitro data on SARS-CoV-2 and SARS-CoV entry displayed this synergy. Further, analysing the data using our model, we estimated the relative usage of the two pathways and found it to vary widely across cell lines, suggesting that targeting both pathways in vivo may be important and synergistic given the broad tissue tropism of SARS-CoV-2. Our findings provide insights into SARS-CoV-2 entry into target cells and may help improve the deployability of drug combinations targeting host proteases required for the entry.
SARS-CoV-2 进入靶细胞需要其表面刺突蛋白 S 被宿主蛋白酶激活。宿主丝氨酸蛋白酶 TMPRSS2 和半胱氨酸蛋白酶 Cathepsin B/L 可以激活 S,使 SARS-CoV-2 能够通过两种独立的进入途径进入。阻断蛋白酶可防止 SARS-CoV-2 在体外进入。这种阻断可能通过“重新利用”药物在体内实现,这是一种针对 COVID-19 的潜在治疗选择,目前正在临床试验中。在这里,我们令人惊讶地发现,尽管针对两种途径的药物是独立的,但在阻断病毒进入方面可能具有很强的协同作用。我们首先使用 SARS-CoV-2 体外进入和动力学的数学模型预测了这种协同作用。该模型明确考虑了两种途径,让通过一种途径的进入效率取决于相应的蛋白酶表达水平,该水平在细胞之间变化,并让抑制剂以剂量依赖的方式降低效率。这种协同作用是新颖的,源于药物在单细胞和细胞群体水平上的作用。验证我们的预测,可用的 SARS-CoV-2 和 SARS-CoV 进入体外数据显示了这种协同作用。此外,我们使用模型对数据进行分析,估计了两种途径的相对使用情况,发现它在细胞系之间差异很大,这表明鉴于 SARS-CoV-2 广泛的组织嗜性,在体内靶向两种途径可能很重要且具有协同作用。我们的研究结果提供了 SARS-CoV-2 进入靶细胞的见解,并可能有助于提高针对宿主蛋白酶的药物组合的可部署性,这些蛋白酶是进入所必需的。