Suppr超能文献

基于不同混合人工神经网络和偏最小二乘回归模型光谱数据组合的嘎啦苹果可滴定酸度和风味指数特性的无损预测

Non-Destructive Prediction of Titratable Acidity and Taste Index Properties of Gala Apple Using Combination of Different Hybrids ANN and PLSR-Model Based Spectral Data.

作者信息

Sharabiani Vali Rasooli, Sabzi Sajad, Pourdarbani Razieh, Solis-Carmona Edgardo, Hernández-Hernández Mario, Hernández-Hernández José Luis

机构信息

Department of Biosystem Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh, Ardabili 56199-11367, Iran.

Faculty of Engineering, Autonomous University of Guerrero, Chilpancingo 39087, Mexico.

出版信息

Plants (Basel). 2020 Dec 6;9(12):1718. doi: 10.3390/plants9121718.

Abstract

Non-destructive estimation of the internal properties of fruits and vegetables is very important, because better management can be provided for subsequent operations. Researchers and scientists around the world are focusing on non-destructive methods because if they are developed and commercialized, there will be an impressive change in the food industry. In this regard, this paper aims to present a non-destructive method based on Vis-NIR spectral data. The different stages of the proposed algorithm are: (1) Collection of samples of Gala apples, (2) Spectral data extraction by spectroscopy, (3) Pre-processing of spectral data, (4) Measurement of chemical properties of titratable acidity (TA) and taste index, (5) Selection of key wavelengths using hybrid artificial neural network-firefly algorithm (ANN-FA), (6) Non-destructive estimation of the properties using two methods of hybrid ANN- Particle swarm optimization algorithm and partial least squares regression. For considering the reliability of methods for estimating the chemical properties, the prediction operation was executed in 300 iterations. The results represented that the mean and standard deviation of the correlation coefficient and the root mean square error of hybrid ANN-PSO and PLSR for TA were 0.9095 ± 0.0175, 0.0598 ± 0.0064, 0.834 ± 0.0313 and 0.0761 ± 0.0061 respectively. These values for taste index were 0.918 ± 0.02, 3.2 ± 0.39, 0.836 ± 0.033 and 4.09 ± 0.403, respectively. Therefore, it can be concluded that the hybrid ANN-PSO has a better performance for non-destructive prediction of the two mentioned chemical properties than the PLSR method. In general, the proposed method can predict the chemical properties of TA and taste index non-destructively, which is very useful for mechanized harvesting and management of post-harvest operation.

摘要

水果和蔬菜内部特性的无损估计非常重要,因为这样可以为后续操作提供更好的管理。世界各地的研究人员和科学家都在关注无损检测方法,因为如果这些方法得以开发并商业化,食品行业将会发生令人瞩目的变化。在这方面,本文旨在提出一种基于可见-近红外光谱数据的无损检测方法。所提算法的不同阶段包括:(1) 收集嘎啦苹果样本;(2) 通过光谱仪提取光谱数据;(3) 光谱数据预处理;(4) 测定可滴定酸度 (TA) 和口感指数的化学性质;(5) 使用混合人工神经网络-萤火虫算法 (ANN-FA) 选择关键波长;(6) 使用混合人工神经网络-粒子群优化算法和偏最小二乘回归这两种方法对特性进行无损估计。为考量化学性质估计方法的可靠性,预测操作进行了300次迭代。结果表明,混合人工神经网络-粒子群优化算法和偏最小二乘回归法对TA的相关系数的均值和标准差以及均方根误差分别为0.9095±0.0175、0.0598±0.0064、0.834±0.0313和0.0761±0.0061。口感指数的这些值分别为0.918±0.02、3.2±0.39、0.836±0.033和4.09±0.403。因此,可以得出结论,对于上述两种化学性质的无损预测,混合人工神经网络-粒子群优化算法比偏最小二乘回归法具有更好的性能。总体而言,所提方法可以无损预测TA和口感指数的化学性质,这对于机械化采收和采后操作管理非常有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f257/7762319/e3dd670a1a1d/plants-09-01718-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验