Suppr超能文献

利用最佳可见-近红外光谱波长回归数据对不同成熟度水平的三种苹果果实特性进行无损估计。

Nondestructive estimation of three apple fruit properties at various ripening levels with optimal Vis-NIR spectral wavelength regression data.

作者信息

Pourdarbani Razieh, Sabzi Sajad, Arribas Juan I

机构信息

Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran.

Department of Electrical Engineering, University of Valladolid, 47011 Valladolid, Spain.

出版信息

Heliyon. 2021 Sep 7;7(9):e07942. doi: 10.1016/j.heliyon.2021.e07942. eCollection 2021 Sep.

Abstract

Nondestructive estimation of fruit properties during their ripening stages ensures the best value for producers and vendors. Among common quality measurement methods, spectroscopy is popular and enables physicochemical properties to be nondestructively estimated. The current study aims to nondestructively predict tissue firmness (kgf/cm), acidity (pH level) and starch content index (%) in apples () samples (Fuji var.) at various ripening stages using visible/near infrared (Vis-NIR) spectral data in 400-1000 nm wavelength range. Results show that non-linear regression done by an artificial neural network-cultural algorithm (ANN-CA) was able to properly estimate the investigated fruit properties. Moreover, the performance of the proposed method was evaluated for Vis-NIR data based on optimal NIR wavelength values selected by a genetic optimization tool. Regression coefficients ( ) in estimated acidity, tissue firmness, and starch content properties were , , and , respectively, using only the three most effective wavelengths from the acquired spectra.

摘要

在果实成熟阶段对其特性进行无损估计可为生产者和销售商确保最佳价值。在常见的质量测量方法中,光谱学很受欢迎,能够对物理化学特性进行无损估计。当前研究旨在利用波长范围为400 - 1000 nm的可见/近红外(Vis - NIR)光谱数据,对不同成熟阶段的苹果(富士品种)样本的组织硬度(kgf/cm)、酸度(pH值)和淀粉含量指数(%)进行无损预测。结果表明,通过人工神经网络 - 文化算法(ANN - CA)进行的非线性回归能够正确估计所研究的果实特性。此外,基于遗传优化工具选择的最佳近红外波长值,对Vis - NIR数据评估了所提方法的性能。仅使用采集光谱中三个最有效的波长时,估计酸度、组织硬度和淀粉含量特性的回归系数( )分别为 、 和 。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d39/8461351/e5b6571149eb/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验