Calderaro F, Keser M, Akeroyd M, Bevers L E, Eijsink V G H, Várnai A, van den Berg M A
DSM Biotechnology Center, PP 699-0310, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands.
Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
Biotechnol Biofuels. 2020 Nov 30;13(1):195. doi: 10.1186/s13068-020-01836-3.
The discovery of lytic polysaccharide monooxygenases (LPMO) has changed our perspective on enzymatic degradation of plant biomass. Through an oxidative mechanism, these enzymes are able to cleave and depolymerize various polysaccharides, acting not only on crystalline substrates such as chitin and cellulose, but also on other polysaccharides, such as xyloglucan, glucomannan and starch. Despite their widespread use, uncertainties related to substrate specificity and stereospecificity, the nature of the co-substrate, in-process stability, and the nature of the optimal reductant challenge their exploitation in biomass processing applications.
In this work, we studied the properties of a novel fungal LPMO from the thermophilic fungus Thielavia australiensis, TausLPMO9B. Heterologous expression of TausLPMO9B in Aspergillus niger yielded a glycosylated protein with a methylated N-terminal histidine showing LPMO activity. High sequence identity of the AA9 domain to that of MtLPMO9B (MYCTH_80312) from Myceliophthora thermophila (84%) indicated strictly C1-oxidizing activity on cellulose, which was confirmed experimentally by the analysis of products released from cellulose using HPAEC. The enzyme was stable and active at a pH ranging from 4 to 6, thus matching the conditions commonly used in industrial biomass processing, where a low pH (between 4 and 5) is used due to the pH-optima of commercial cellulases and a desire to limit microbial contamination.
While the oxidative cleavage of phosphoric acid swollen cellulose (PASC) by TausLPMO9B was boosted by the addition of HO as a co-substrate, this effect was not observed during the saccharification of acid pretreated corn stover. This illustrates key differences between the lab-scale tests with artificial, lignin-free substrates and industrial settings with lignocellulosic biomass as substrate.
裂解多糖单加氧酶(LPMO)的发现改变了我们对植物生物质酶促降解的看法。通过氧化机制,这些酶能够裂解和解聚各种多糖,不仅作用于几丁质和纤维素等结晶底物,还作用于其他多糖,如木葡聚糖、葡甘露聚糖和淀粉。尽管它们被广泛使用,但与底物特异性和立体特异性、共底物的性质、过程稳定性以及最佳还原剂的性质相关的不确定性,对它们在生物质加工应用中的开发提出了挑战。
在这项工作中,我们研究了来自嗜热真菌澳大利亚栖热菌(Thielavia australiensis)的一种新型真菌LPMO——TausLPMO9B的特性。TausLPMO9B在黑曲霉中的异源表达产生了一种糖基化蛋白,其N端组氨酸甲基化,具有LPMO活性。AA9结构域与嗜热毁丝霉(Myceliophthora thermophila)的MtLPMO9B(MYCTH_80312)的序列同一性较高(84%),表明其对纤维素具有严格的C1氧化活性,通过使用高效阴离子交换色谱(HPAEC)分析纤维素释放的产物,实验证实了这一点。该酶在pH值为4至6的范围内稳定且具有活性,因此与工业生物质加工中常用的条件相匹配,在工业生物质加工中,由于商业纤维素酶的最适pH值以及限制微生物污染的需求,使用低pH值(4至5之间)。
虽然添加HO作为共底物可促进TausLPMO9B对磷酸膨胀纤维素(PASC)的氧化裂解,但在酸预处理玉米秸秆的糖化过程中未观察到这种效果。这说明了使用人工无木质素底物的实验室规模测试与以木质纤维素生物质为底物的工业环境之间的关键差异。