Suppr超能文献

HO 驱动的 Cu LPMO 再氧化中形成的氨基酸自由基的动力学分析表明主导的均裂反应性。

Kinetic analysis of amino acid radicals formed in HO-driven Cu LPMO reoxidation implicates dominant homolytic reactivity.

机构信息

Department of Chemistry, Stanford University, Stanford, CA 94305.

DuPont Nutrition and Biosciences, Palo Alto, CA 94304.

出版信息

Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):11916-11922. doi: 10.1073/pnas.1922499117. Epub 2020 May 15.

Abstract

Lytic polysaccharide monooxygenases (LPMOs) have been proposed to react with both [Formula: see text] and [Formula: see text] as cosubstrates. In this study, the [Formula: see text] reaction with reduced LPMO9A (Cu-LPMO9A) is demonstrated to be 1,000-fold faster than the [Formula: see text] reaction while producing the same oxidized oligosaccharide products. Analysis of the reactivity in the absence of polysaccharide substrate by stopped-flow absorption and rapid freeze-quench (RFQ) electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) yields two intermediates corresponding to neutral tyrosyl and tryptophanyl radicals that are formed along minor reaction pathways. The dominant reaction pathway is characterized by RFQ EPR and kinetic modeling to directly produce Cu-LPMO9A and indicates homolytic O-O cleavage. Both optical intermediates exhibit magnetic exchange coupling with the Cu sites reflecting facile electron transfer (ET) pathways, which may be protective against uncoupled turnover or provide an ET pathway to the active site with substrate bound. The reactivities of nonnative organic peroxide cosubstrates effectively exclude the possibility of a ping-pong mechanism.

摘要

溶细胞多糖单加氧酶(LPMO)被提议与[Formula: see text]和[Formula: see text]作为共底物反应。在这项研究中,证明还原的 LPMO9A(Cu-LPMO9A)与[Formula: see text]的反应速度比[Formula: see text]快 1000 倍,同时产生相同的氧化寡糖产物。通过停流吸收和快速冷冻淬火(RFQ)电子顺磁共振(EPR)和磁圆二色性(MCD)分析无多糖底物时的反应性,得到两个对应于中性酪氨酸和色氨酸自由基的中间体,这些自由基是沿着次要反应途径形成的。主要反应途径的特征是通过 RFQ EPR 和动力学建模直接产生 Cu-LPMO9A,并表明均裂 O-O 裂解。两种光学中间体都与 Cu 位点表现出磁交换耦合,反映了易于发生电子转移(ET)途径,这可能有助于防止不偶联的周转或为与底物结合的活性位点提供 ET 途径。非天然有机过氧化物共底物的反应性有效地排除了乒乓机制的可能性。

相似文献

5
Radical formation in cytochrome c oxidase.细胞色素c氧化酶中的自由基形成。
Biochim Biophys Acta. 2011 Oct;1807(10):1295-304. doi: 10.1016/j.bbabio.2011.06.012. Epub 2011 Jun 22.
10
Molecular mechanism of the chitinolytic peroxygenase reaction.几丁质分解过氧化物酶反应的分子机制。
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1504-1513. doi: 10.1073/pnas.1904889117. Epub 2020 Jan 6.

引用本文的文献

8
Electron transfer in polysaccharide monooxygenase catalysis.多糖单加氧酶催化中的电子转移
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2411229121. doi: 10.1073/pnas.2411229121. Epub 2024 Dec 30.

本文引用的文献

2
Molecular mechanism of the chitinolytic peroxygenase reaction.几丁质分解过氧化物酶反应的分子机制。
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1504-1513. doi: 10.1073/pnas.1904889117. Epub 2020 Jan 6.
9
Molecular mechanism of lytic polysaccharide monooxygenases.裂解多糖单加氧酶的分子机制
Chem Sci. 2018 Mar 26;9(15):3866-3880. doi: 10.1039/c8sc00426a. eCollection 2018 Apr 21.
10
Reactivity of O versus HO with polysaccharide monooxygenases.O 与 HO 与多糖单加氧酶的反应性。
Proc Natl Acad Sci U S A. 2018 May 8;115(19):4915-4920. doi: 10.1073/pnas.1801153115. Epub 2018 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验