Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria.
Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.
FEBS J. 2020 Mar;287(5):897-908. doi: 10.1111/febs.15067. Epub 2019 Oct 1.
The catalytic function of lytic polysaccharide monooxygenases (LPMOs) to cleave and decrystallize recalcitrant polysaccharides put these enzymes in the spotlight of fundamental and applied research. Here we demonstrate that the demand of LPMO for an electron donor and an oxygen species as cosubstrate can be fulfilled by a single auxiliary enzyme: an engineered fungal cellobiose dehydrogenase (CDH) with increased oxidase activity. The engineered CDH was about 30 times more efficient in driving the LPMO reaction due to its 27 time increased production of H O acting as a cosubstrate for LPMO. Transient kinetic measurements confirmed that intra- and intermolecular electron transfer rates of the engineered CDH were similar to the wild-type CDH, meaning that the mutations had not compromised CDH's role as an electron donor. These results support the notion of H O -driven LPMO activity and shed new light on the role of CDH in activating LPMOs. Importantly, the results also demonstrate that the use of the engineered CDH results in fast and steady LPMO reactions with CDH-generated H O as a cosubstrate, which may provide new opportunities to employ LPMOs in biomass hydrolysis to generate fuels and chemicals.
溶细胞单加氧酶 (LPMO) 的催化功能可切割和去结晶抗性多糖,使其成为基础和应用研究的焦点。在这里,我们证明 LPMO 对电子供体和氧物种作为共底物的需求可以由一种辅助酶来满足:一种经过工程改造的真菌纤维二糖脱氢酶 (CDH),其氧化酶活性增强。由于其产生的 H O 作为 LPMO 的共底物的作用增加了 27 倍,因此工程化的 CDH 在驱动 LPMO 反应方面的效率大约提高了 30 倍。瞬态动力学测量证实,工程化 CDH 的分子内和分子间电子转移速率与野生型 CDH 相似,这意味着突变并未损害 CDH 作为电子供体的作用。这些结果支持 H O 驱动的 LPMO 活性的概念,并为 CDH 在激活 LPMO 中的作用提供了新的见解。重要的是,这些结果还表明,使用工程化的 CDH 可以在产生 H O 的 CDH 作为共底物的情况下实现快速且稳定的 LPMO 反应,这可能为在生物质水解中使用 LPMO 来生成燃料和化学品提供新的机会。