Suppr超能文献

物理刺激响应性无细胞蛋白质合成。

Physical stimuli-responsive cell-free protein synthesis.

作者信息

Yang Junzhu, Lu Yuan

机构信息

Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China.

出版信息

Synth Syst Biotechnol. 2020 Nov 23;5(4):363-368. doi: 10.1016/j.synbio.2020.11.001. eCollection 2020 Dec.

Abstract

Cell-free protein synthesis has been developed as a critical platform in synthetic biology. Unlike the cell-based synthesis system, cell-free system activates transcriptional and translational mechanisms , and can control protein synthesis by artificially adding components or chemicals. However, the control method puts forward higher requirements in terms of accurate and non-toxic control, which cannot be achieved by chemical substances. For cell-free system, physical signal is a kind of ideal spatiotemporal control approach to replace chemical substances, realizing high accuracy with little side effect. Here we review the methods of using physical signals to control gene expression in cell-free systems, including studies based on light, temperature, electric field, and magnetic force. The transfer of these switches into cell-free system further expands the flexibility and controllability of the system, thus further expanding the application capability of cell-free systems. Finally, existing problems such as signal source and signal transmission are discussed, and future applications in pharmaceutical production, delivery and industrial production are further looked into.

摘要

无细胞蛋白质合成已发展成为合成生物学中的一个关键平台。与基于细胞的合成系统不同,无细胞系统激活转录和翻译机制,并且可以通过人工添加成分或化学物质来控制蛋白质合成。然而,这种控制方法在精确且无毒控制方面提出了更高的要求,而化学物质无法实现这一点。对于无细胞系统而言,物理信号是一种理想的时空控制方法,可取代化学物质,实现高精度且副作用小。在此,我们综述了在无细胞系统中利用物理信号控制基因表达的方法,包括基于光、温度、电场和磁力的研究。将这些开关引入无细胞系统进一步扩展了系统的灵活性和可控性,从而进一步扩大了无细胞系统的应用能力。最后,讨论了信号源和信号传输等现有问题,并进一步展望了其在药物生产、递送和工业生产中的未来应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30fe/7695910/c281617fc29d/gr1.jpg

相似文献

1
Physical stimuli-responsive cell-free protein synthesis.
Synth Syst Biotechnol. 2020 Nov 23;5(4):363-368. doi: 10.1016/j.synbio.2020.11.001. eCollection 2020 Dec.
2
A Temperature-Controlled Cell-Free Expression System by Dynamic Repressor.
ACS Synth Biol. 2022 Apr 15;11(4):1408-1416. doi: 10.1021/acssynbio.1c00641. Epub 2022 Mar 23.
3
Establishing a -Based Cell-Free Protein Synthesis System.
Molecules. 2022 Jul 22;27(15):4684. doi: 10.3390/molecules27154684.
4
Establishing a High-Yielding Cell-Free Protein Synthesis Platform Derived from Vibrio natriegens.
ACS Synth Biol. 2018 Sep 21;7(9):2245-2255. doi: 10.1021/acssynbio.8b00252. Epub 2018 Sep 6.
5
6
Synthetic gene involving azobenzene-tethered T7 promoter for the photocontrol of gene expression by visible light.
ACS Synth Biol. 2015 Apr 17;4(4):365-70. doi: 10.1021/sb5001092. Epub 2014 Aug 27.
7
Cell-Free Synthetic Biology: Engineering Beyond the Cell.
Cold Spring Harb Perspect Biol. 2016 Dec 1;8(12):a023853. doi: 10.1101/cshperspect.a023853.
8
Establishing a Eukaryotic Cell-Free Protein Synthesis System.
Front Bioeng Biotechnol. 2020 Jun 18;8:536. doi: 10.3389/fbioe.2020.00536. eCollection 2020.
10
Exploration of the Tolerance Ability of a Cell-Free Biosynthesis System to Toxic Substances.
Appl Biochem Biotechnol. 2019 Dec;189(4):1096-1107. doi: 10.1007/s12010-019-03039-5. Epub 2019 Jun 4.

引用本文的文献

2
Genetically programmed synthetic cells for thermo-responsive protein synthesis and cargo release.
Nat Chem Biol. 2024 Oct;20(10):1380-1386. doi: 10.1038/s41589-024-01673-7. Epub 2024 Jul 5.
3
A closed-loop catalytic nanoreactor system on a transistor.
Sci Adv. 2023 Sep 22;9(38):eadj0839. doi: 10.1126/sciadv.adj0839. Epub 2023 Sep 20.
4
Precise, Orthogonal Remote-Control of Cell-Free Systems Using Photocaged Nucleic Acids.
J Am Chem Soc. 2023 May 3;145(17):9481-9487. doi: 10.1021/jacs.3c01238. Epub 2023 Apr 19.
5
The Use of Cell-free Protein Synthesis to Push the Boundaries of Synthetic Biology.
Biotechnol Bioprocess Eng. 2023 Jan 14:1-7. doi: 10.1007/s12257-022-0279-2.
6
Customized synthesis of phosphoprotein bearing phosphoserine or its nonhydrolyzable analog.
Synth Syst Biotechnol. 2022 Nov 24;8(1):69-78. doi: 10.1016/j.synbio.2022.11.004. eCollection 2023 Mar.
7
Toward Multiplexed Optogenetic Circuits.
Front Bioeng Biotechnol. 2022 Jan 5;9:804563. doi: 10.3389/fbioe.2021.804563. eCollection 2021.
8
Development and comparison of cell-free protein synthesis systems derived from typical bacterial chassis.
Bioresour Bioprocess. 2021;8(1):58. doi: 10.1186/s40643-021-00413-2. Epub 2021 Jul 6.

本文引用的文献

1
Cell-free biology using remote-controlled digital microfluidics for individual droplet control.
RSC Adv. 2020 Jul 20;10(45):26972-26981. doi: 10.1039/d0ra04588h. eCollection 2020 Jul 15.
2
Bringing Light into Cell-Free Expression.
ACS Synth Biol. 2020 Aug 21;9(8):2144-2153. doi: 10.1021/acssynbio.0c00211. Epub 2020 Jul 15.
3
Cell-free gene expression: an expanded repertoire of applications.
Nat Rev Genet. 2020 Mar;21(3):151-170. doi: 10.1038/s41576-019-0186-3. Epub 2019 Nov 28.
5
Temperature-sensitive protein expression in protocells.
Chem Commun (Camb). 2019 May 30;55(45):6421-6424. doi: 10.1039/c9cc02734c.
6
Diblock copolymers enhance folding of a mechanosensitive membrane protein during cell-free expression.
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4031-4036. doi: 10.1073/pnas.1814775116. Epub 2019 Feb 13.
8
Programming Bacteria With Light-Sensors and Applications in Synthetic Biology.
Front Microbiol. 2018 Nov 8;9:2692. doi: 10.3389/fmicb.2018.02692. eCollection 2018.
9
Electric-Field Manipulation of a Compartmentalized Cell-Free Gene Expression Reaction.
ACS Synth Biol. 2018 Aug 17;7(8):1829-1833. doi: 10.1021/acssynbio.8b00160. Epub 2018 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验