Suppr超能文献

利用强大的无细胞系统将非天然氨基酸高效掺入蛋白质中。

Efficient Incorporation of Unnatural Amino Acids into Proteins with a Robust Cell-Free System.

作者信息

Gao Wei, Bu Ning, Lu Yuan

机构信息

College of Life Science, Shenyang Normal University, Shenyang 100034, Liaoning, China.

Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

出版信息

Methods Protoc. 2019 Feb 12;2(1):16. doi: 10.3390/mps2010016.

Abstract

Unnatural proteins are crucial biomacromolecules and have been widely applied in fundamental science, novel biopolymer materials, enzymes, and therapeutics. Cell-free protein synthesis (CFPS) system can serve as a robust platform to synthesize unnatural proteins by highly effective site-specific incorporation of unnatural amino acids (UNAAs), without the limitations of cell membrane permeability and the toxicity of unnatural components. Here, we describe a quick and simple method to synthesize unnatural proteins in CFPS system based on crude extract, with unnatural orthogonal aminoacyl-tRNA synthetase and suppressor tRNA evolved from . The superfolder green fluorescent protein (sfGFP) and -propargyloxyphenylalanine (PaF) were used as the model protein and UNAA. The synthesis of unnatural sfGFPs was characterized by microplate spectrophotometer, affinity chromatography, and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). This protocol provides a detailed procedure guiding how to use the powerful CFPS system to synthesize unnatural proteins on demand.

摘要

非天然蛋白质是至关重要的生物大分子,已广泛应用于基础科学、新型生物聚合物材料、酶和治疗学领域。无细胞蛋白质合成(CFPS)系统可作为一个强大的平台,通过高效位点特异性掺入非天然氨基酸(UNAAs)来合成非天然蛋白质,不受细胞膜通透性和非天然成分毒性的限制。在此,我们描述了一种基于粗提物在CFPS系统中合成非天然蛋白质的快速简便方法,该方法使用了从[具体来源]进化而来的非天然正交氨酰-tRNA合成酶和抑制性tRNA。超折叠绿色荧光蛋白(sfGFP)和对炔丙氧基苯丙氨酸(PaF)用作模型蛋白和非天然氨基酸。通过微孔板分光光度计、亲和色谱和液相色谱-质谱/质谱(LC-MS/MS)对非天然sfGFP的合成进行了表征。本方案提供了一个详细的程序,指导如何使用强大的CFPS系统按需合成非天然蛋白质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4374/6481062/3365b4f09c6a/mps-02-00016-g001.jpg

相似文献

2
Site-specific incorporation of unnatural amino acids into proteins by cell-free protein synthesis.
Methods Mol Biol. 2014;1118:189-203. doi: 10.1007/978-1-62703-782-2_12.
3
Using E. coli-based cell-free protein synthesis to evaluate the kinetic performance of an orthogonal tRNA and aminoacyl-tRNA synthetase pair.
Biochem Biophys Res Commun. 2013 Feb 8;431(2):291-5. doi: 10.1016/j.bbrc.2012.12.108. Epub 2013 Jan 3.
4
Toward efficient multiple-site incorporation of unnatural amino acids using cell-free translation system.
Synth Syst Biotechnol. 2021 Dec 23;7(1):522-532. doi: 10.1016/j.synbio.2021.12.007. eCollection 2022 Mar.
5
Advances and Challenges in Cell-Free Incorporation of Unnatural Amino Acids Into Proteins.
Front Pharmacol. 2019 May 29;10:611. doi: 10.3389/fphar.2019.00611. eCollection 2019.
6
A linear DNA template-based framework for site-specific unnatural amino acid incorporation.
Synth Syst Biotechnol. 2021 Jul 31;6(3):192-199. doi: 10.1016/j.synbio.2021.07.003. eCollection 2021 Sep.
8
High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites.
Biochem Biophys Res Commun. 2012 Feb 24;418(4):652-6. doi: 10.1016/j.bbrc.2012.01.069. Epub 2012 Jan 24.
9
Improved Incorporation of Noncanonical Amino Acids by an Engineered tRNA(Tyr) Suppressor.
Biochemistry. 2016 Jan 26;55(3):618-28. doi: 10.1021/acs.biochem.5b01185. Epub 2016 Jan 8.
10
An enhanced system for unnatural amino acid mutagenesis in E. coli.
J Mol Biol. 2010 Jan 15;395(2):361-74. doi: 10.1016/j.jmb.2009.10.030. Epub 2009 Oct 21.

引用本文的文献

1
Bottom-Up Synthetic Biology Using Cell-Free Protein Synthesis.
Adv Biochem Eng Biotechnol. 2023;185:1-20. doi: 10.1007/10_2023_232.
2
Advancing synthetic biology through cell-free protein synthesis.
Comput Struct Biotechnol J. 2023 May 4;21:2899-2908. doi: 10.1016/j.csbj.2023.05.003. eCollection 2023.
3
Cell-free biology using remote-controlled digital microfluidics for individual droplet control.
RSC Adv. 2020 Jul 20;10(45):26972-26981. doi: 10.1039/d0ra04588h. eCollection 2020 Jul 15.
4
Efficient multi-gene expression in cell-free droplet microreactors.
PLoS One. 2022 Mar 21;17(3):e0260420. doi: 10.1371/journal.pone.0260420. eCollection 2022.
5
Toward efficient multiple-site incorporation of unnatural amino acids using cell-free translation system.
Synth Syst Biotechnol. 2021 Dec 23;7(1):522-532. doi: 10.1016/j.synbio.2021.12.007. eCollection 2022 Mar.
6
A linear DNA template-based framework for site-specific unnatural amino acid incorporation.
Synth Syst Biotechnol. 2021 Jul 31;6(3):192-199. doi: 10.1016/j.synbio.2021.07.003. eCollection 2021 Sep.
7
Development and comparison of cell-free protein synthesis systems derived from typical bacterial chassis.
Bioresour Bioprocess. 2021;8(1):58. doi: 10.1186/s40643-021-00413-2. Epub 2021 Jul 6.
8
Physical stimuli-responsive cell-free protein synthesis.
Synth Syst Biotechnol. 2020 Nov 23;5(4):363-368. doi: 10.1016/j.synbio.2020.11.001. eCollection 2020 Dec.
9
Establishing a Eukaryotic Cell-Free Protein Synthesis System.
Front Bioeng Biotechnol. 2020 Jun 18;8:536. doi: 10.3389/fbioe.2020.00536. eCollection 2020.
10
Exploring the Potential of Cell-Free Protein Synthesis for Extending the Abilities of Biological Systems.
Front Bioeng Biotechnol. 2019 Oct 11;7:248. doi: 10.3389/fbioe.2019.00248. eCollection 2019.

本文引用的文献

1
Cell-free synthetic biology: Engineering in an open world.
Synth Syst Biotechnol. 2017 Mar 3;2(1):23-27. doi: 10.1016/j.synbio.2017.02.003. eCollection 2017 Mar.
2
Translation system engineering in Escherichia coli enhances non-canonical amino acid incorporation into proteins.
Biotechnol Bioeng. 2017 May;114(5):1074-1086. doi: 10.1002/bit.26239. Epub 2017 Feb 2.
3
Genetically encoding new bioreactivity.
N Biotechnol. 2017 Sep 25;38(Pt A):16-25. doi: 10.1016/j.nbt.2016.10.003. Epub 2016 Oct 6.
4
Incorporation of Non-Canonical Amino Acids.
Adv Exp Med Biol. 2015;869:119-51. doi: 10.1007/978-1-4939-2845-3_7.
5
6
Repurposing the translation apparatus for synthetic biology.
Curr Opin Chem Biol. 2015 Oct;28:83-90. doi: 10.1016/j.cbpa.2015.06.008. Epub 2015 Jul 15.
7
Cotranslational incorporation of non-standard amino acids using cell-free protein synthesis.
FEBS Lett. 2015 Jul 8;589(15):1703-12. doi: 10.1016/j.febslet.2015.04.041. Epub 2015 May 1.
8
Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis.
Front Chem. 2014 Jun 10;2:34. doi: 10.3389/fchem.2014.00034. eCollection 2014.
9
Recoding the genetic code with selenocysteine.
Angew Chem Int Ed Engl. 2014 Jan 3;53(1):319-23. doi: 10.1002/anie.201308584.
10
Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system.
Biochimie. 2014 Apr;99:162-8. doi: 10.1016/j.biochi.2013.11.025. Epub 2013 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验