Suppr超能文献

在支持脂双层上检测和表征与髓鞘相关糖蛋白结合的囊泡神经节苷脂。

Detection and Characterization of Vesicular Gangliosides Binding to Myelin-Associated Glycoprotein on Supported Lipid Bilayers.

机构信息

Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States.

出版信息

Anal Chem. 2021 Jan 19;93(2):1185-1192. doi: 10.1021/acs.analchem.0c04412. Epub 2020 Dec 9.

Abstract

In the nervous system, a myelin sheath that originates from oligodendrocytes or Schwann cells wraps around axons to facilitate electrical signal transduction. The interface between an axon and myelin is maintained by a number of biomolecular interactions. Among the interactions are those between GD1a and GT1b gangliosides on the axon and myelin-associated glycoprotein (MAG) on myelin. Interestingly, these interactions can also inhibit neuronal outgrowth. Ganglioside-MAG interactions are often studied in cellular or animal models where their relative concentrations are not easily controlled or in assays where the gangliosides and MAG are not presented as part of fluid lipid bilayers. Here, we present an approach to characterize MAG-ganglioside interactions in real time, where MAG, GD1a, and GT1b contents are controlled and they are in their in vivo orientation within fluid lipid bilayers. Using a quartz crystal microbalance with dissipation monitoring (QCM-D) biosensor functionalized with a supported lipid bilayer (SLB) and MAG, we detect vesicular GD1a and GT1b binding and determine the interaction kinetics as a function of vesicular ganglioside content. MAG-bound vesicles are deformed similarly, regardless of the ganglioside or its mole fraction. We further demonstrate how MAG-ganglioside interactions can be disrupted by antiganglioside antibodies that override MAG-based neuron growth inhibition.

摘要

在神经系统中,起源于少突胶质细胞或施万细胞的髓鞘包裹在轴突周围,以促进电信号转导。轴突和髓鞘之间的界面由许多生物分子相互作用维持。这些相互作用包括轴突上的 GD1a 和 GT1b 神经节苷脂与髓鞘相关糖蛋白 (MAG) 之间的相互作用。有趣的是,这些相互作用也可以抑制神经元的生长。神经节苷脂-MAG 相互作用通常在细胞或动物模型中进行研究,在这些模型中,它们的相对浓度不容易控制,或者在测定中,神经节苷脂和 MAG 不作为流体脂质双层的一部分呈现。在这里,我们提出了一种方法来实时表征 MAG-神经节苷脂相互作用,其中 MAG、GD1a 和 GT1b 的含量得到控制,并且它们在流体脂质双层中处于其体内取向。我们使用带有耗散监测的石英晶体微天平 (QCM-D) 生物传感器,该传感器用支持脂质双层 (SLB) 和 MAG 功能化,检测囊泡 GD1a 和 GT1b 的结合,并确定作为囊泡神经节苷脂含量函数的相互作用动力学。无论神经节苷脂或其摩尔分数如何,MAG 结合的囊泡都会以相似的方式变形。我们进一步证明了如何通过抗神经节苷脂抗体破坏 MAG-神经节苷脂相互作用,抗神经节苷脂抗体可以克服 MAG 介导的神经元生长抑制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验