Suppr超能文献

与酪氨酸激酶抑制剂耐药相关的6基因特征鉴定:透明细胞肾细胞癌的预后

Identification of a 6-Gene Signature Associated with Resistance to Tyrosine Kinase Inhibitors: Prognosis for Clear Cell Renal Cell Carcinoma.

作者信息

Li Qinke, Yang Wenbo, Lu Maoqing, Zhang Ronggui

机构信息

Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China (mainland).

出版信息

Med Sci Monit. 2020 Dec 9;26:e927078. doi: 10.12659/MSM.927078.

Abstract

BACKGROUND Tyrosine kinase inhibitors (TKIs) are used to treat metastatic disease associated with clear cell renal cell carcinoma (ccRCC); however, most patients develop resistance after 6 to 15 months. As such, identifying biomarkers of TKI resistance may be useful for prognosis. MATERIAL AND METHODS We analyzed ChIP-seq data related to TKI resistance from the Gene Expression Omnibus and RNA-Seq and clinical data from The Cancer Genome Atlas database. We used univariate Cox analysis and Cox regression/Lasso analysis to determine a risk score. The Kaplan-Meier estimate and receiver operating characteristic curve verified the risk score's sensitivity and specificity. The stratified analysis and the univariate and multivariate analyses revealed its predictive power. We predicted survival time by constructing a nomogram. RESULTS Of the 32 differentially expressed genes (DEGs) related to TKI resistance, 6 (ACE2, MMP24, SLC44A4, C1R, C1ORF194, ADAMTS15) were used to establish a risk score. Kaplan-Meier analysis showed that high-risk patients had shorter median survival times than low-risk patients, notably among those with metastatic disease (1.51 vs. 4.55 years). The stratified analysis revealed that patients with advanced disease had relatively higher risk scores than patients at early stages (P<0.001). Univariate analysis independently associated the 6-DEGs signature with the prognosis of metastatic ccRCC (hazard ratio, 1.217; 95% confidence interval, 1.090-1.358). The nomogram we constructed based on 6-DEGs signature and clinical parameters predicted survival time accurately. CONCLUSIONS We identified a 6-DEGs signature that permitted us to establish a risk score related to TKI resistance that can serve as a reliable biomarker for predicting the survival of patients with ccRCC.

摘要

背景 酪氨酸激酶抑制剂(TKIs)用于治疗与透明细胞肾细胞癌(ccRCC)相关的转移性疾病;然而,大多数患者在6至15个月后会产生耐药性。因此,识别TKI耐药的生物标志物可能有助于预后评估。材料与方法 我们分析了来自基因表达综合数据库中与TKI耐药相关的ChIP-seq数据以及来自癌症基因组图谱数据库的RNA-Seq和临床数据。我们使用单变量Cox分析和Cox回归/套索分析来确定风险评分。Kaplan-Meier估计和受试者工作特征曲线验证了风险评分的敏感性和特异性。分层分析以及单变量和多变量分析揭示了其预测能力。我们通过构建列线图来预测生存时间。结果 在与TKI耐药相关的32个差异表达基因(DEGs)中,6个基因(ACE2、MMP24、SLC44A4、C1R、C1ORF194、ADAMTS15)用于建立风险评分。Kaplan-Meier分析表明,高风险患者的中位生存时间比低风险患者短,尤其是在转移性疾病患者中(1.51年对4.55年)。分层分析显示,晚期疾病患者的风险评分相对高于早期患者(P<0.001)。单变量分析独立地将6-DEGs特征与转移性ccRCC的预后相关联(风险比,1.217;95%置信区间,1.090 - 1.358)。我们基于6-DEGs特征和临床参数构建的列线图准确地预测了生存时间。结论 我们识别出一个6-DEGs特征,它使我们能够建立一个与TKI耐药相关联的风险评分,该评分可作为预测ccRCC患者生存的可靠生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/368d/7734882/2e018a056307/medscimonit-26-e927078-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验