Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
CPT Pharmacometrics Syst Pharmacol. 2021 Feb;10(2):89-99. doi: 10.1002/psp4.12584. Epub 2021 Jan 25.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak initiated the global coronavirus disease 2019 (COVID-19) pandemic resulting in 42.9 million confirmed infections and > 1.1 million deaths worldwide as of October 26, 2020. Remdesivir is a broad-spectrum nucleotide prodrug shown to be effective against enzootic coronaviruses. The pharmacokinetics (PKs) of remdesivir in plasma have recently been described. However, the distribution of its active metabolite nucleoside triphosphate (NTP) to the site of pulmonary infection is unknown in humans. Our objective was to use existing in vivo mouse PK data for remdesivir and its metabolites to develop a mechanism-based model to allometrically scale and simulate the human PK of remdesivir in plasma and NTP in lung homogenate. Remdesivir and GS-441524 concentrations in plasma and total phosphorylated nucleoside concentrations in lung homogenate from Ces1c mice administered 25 or 50 mg/kg of remdesivir subcutaneously were simultaneously fit to estimate PK parameters. The mouse PK model was allometrically scaled to predict human PK parameters to simulate the clinically recommended 200 mg loading dose followed by 100 mg daily maintenance doses administered as 30-minute intravenous infusions. Simulations of unbound remdesivir concentrations in human plasma were below 2.48 μM, the 90% maximal inhibitory concentration for SARS-CoV-2 inhibition in vitro. Simulations of NTP in the lungs were below high efficacy in vitro thresholds. We have identified a need for alternative dosing strategies to achieve more efficacious concentrations of NTP in human lungs, perhaps by reformulating remdesivir for direct pulmonary delivery.
截至 2020 年 10 月 26 日,严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)引发了全球 2019 年冠状病毒病(COVID-19)大流行,导致全球确诊感染病例 4290 万例,死亡病例超过 110 万例。瑞德西韦是一种广谱核苷酸前药,已被证明对地方性冠状病毒有效。最近描述了瑞德西韦在血浆中的药代动力学(PK)。然而,其活性代谢物核苷三磷酸(NTP)在人体内向肺部感染部位的分布情况尚不清楚。我们的目的是利用现有的瑞德西韦及其代谢物的体内小鼠 PK 数据,开发一种基于机制的模型,对瑞德西韦在血浆中的人体 PK 和肺部匀浆中的 NTP 进行同种异体缩放和模拟。对给予皮下注射 25 或 50mg/kg 瑞德西韦的 Ces1c 小鼠的血浆中瑞德西韦和 GS-441524 浓度以及肺匀浆中总磷酸化核苷浓度进行同时拟合,以估算 PK 参数。将小鼠 PK 模型进行同种异体缩放,以预测人体 PK 参数,模拟临床推荐的 200mg 负荷剂量,随后以 30 分钟静脉输注的方式每日给予 100mg 维持剂量。模拟人血浆中未结合的瑞德西韦浓度低于 2.48μM,这是 SARS-CoV-2 体外最大抑制浓度的 90%。肺部 NTP 的模拟结果低于体外高疗效阈值。我们发现需要替代给药策略,以在人体肺部达到更有效的 NTP 浓度,也许可以通过将瑞德西韦重新配方用于直接肺部给药。