Suppr超能文献

多尺度模型研究抗病毒时机、效力和异质性对 SARS-CoV-2 感染上皮组织补丁的影响。

Multiscale Model of Antiviral Timing, Potency, and Heterogeneity Effects on an Epithelial Tissue Patch Infected by SARS-CoV-2.

机构信息

Department of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University, 2425 N Milo B Sampson Ln, Bloomington, IN 47408, USA.

Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, 950 W Walnut Street, Indianapolis, IN 46202, USA.

出版信息

Viruses. 2022 Mar 14;14(3):605. doi: 10.3390/v14030605.

Abstract

We extend our established agent-based multiscale computational model of infection of lung tissue by SARS-CoV-2 to include pharmacokinetic and pharmacodynamic models of remdesivir. We model remdesivir treatment for COVID-19; however, our methods are general to other viral infections and antiviral therapies. We investigate the effects of drug potency, drug dosing frequency, treatment initiation delay, antiviral half-life, and variability in cellular uptake and metabolism of remdesivir and its active metabolite on treatment outcomes in a simulated patch of infected epithelial tissue. Non-spatial deterministic population models which treat all cells of a given class as identical can clarify how treatment dosage and timing influence treatment efficacy. However, they do not reveal how cell-to-cell variability affects treatment outcomes. Our simulations suggest that for a given treatment regime, including cell-to-cell variation in drug uptake, permeability and metabolism increase the likelihood of uncontrolled infection as the cells with the lowest internal levels of antiviral act as super-spreaders within the tissue. The model predicts substantial variability in infection outcomes between similar tissue patches for different treatment options. In models with cellular metabolic variability, antiviral doses have to be increased significantly (>50% depending on simulation parameters) to achieve the same treatment results as with the homogeneous cellular metabolism.

摘要

我们将基于代理的 SARS-CoV-2 感染肺组织的多尺度计算模型扩展到包括瑞德西韦的药代动力学和药效动力学模型。我们对 COVID-19 的瑞德西韦治疗进行建模;然而,我们的方法对于其他病毒感染和抗病毒治疗是通用的。我们研究了药物效力、药物给药频率、治疗开始延迟、抗病毒半衰期以及瑞德西韦及其活性代谢物在细胞内摄取和代谢的变异性对感染上皮组织模拟斑块中治疗结果的影响。将给定类别的所有细胞视为相同的非空间确定性群体模型可以阐明治疗剂量和时间如何影响治疗效果。然而,它们并没有揭示细胞间变异性如何影响治疗结果。我们的模拟表明,对于给定的治疗方案,包括药物摄取、通透性和代谢在内的细胞间变异性增加了不受控制感染的可能性,因为内部抗病毒水平最低的细胞在组织内充当超级传播者。该模型预测,对于不同的治疗选择,不同的组织斑块之间的感染结果存在很大差异。在具有细胞代谢变异性的模型中,必须显著增加抗病毒剂量(取决于模拟参数的 50%以上)才能达到与均匀细胞代谢相同的治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3141/8953050/8644b9913600/viruses-14-00605-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验