Suppr超能文献

在将二维氮化镓(GaN)和氮化铝(AlN)“合金化”后其具有极高的热导率。

The exceptionally high thermal conductivity after 'alloying' two-dimensional gallium nitride (GaN) and aluminum nitride (AlN).

作者信息

Wang Huimin, Wei Donghai, Duan Junfei, Qin Zhenzhen, Qin Guangzhao, Yao Yagang, Hu Ming

机构信息

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China.

Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, United States of America.

出版信息

Nanotechnology. 2021 Mar 26;32(13):135401. doi: 10.1088/1361-6528/abd20c.

Abstract

Alloying is a widely employed approach for tuning properties of materials, especially for thermal conductivity which plays a key role in the working liability of electronic devices and the energy conversion efficiency of thermoelectric devices. Commonly, the thermal conductivity of an alloy is acknowledged to be the smallest compared to the parent materials. However, the findings in this study bring some different points of view on the modulation of thermal transport by alloying. The thermal transport properties of monolayer GaN, AlN, and their alloys of Ga Al N are comparatively investigated by solving the Boltzmann transport equation (BTE) based on first-principles calculations. The thermal conductivity of GaAlN alloy (29.57 Wm K) and GaAlN alloy (21.49 Wm K) are found exceptionally high to be between AlN (74.42 Wm K) and GaN (14.92 Wm K), which violates the traditional knowledge that alloying usually lowers thermal conductivity. The mechanism resides in that, the existence of Al atoms reduces the difference in atomic radius and masses of the GaAlN alloy, which also induces an isolated optical phonon branch around 18 THz. As a result, the scattering phase space of GaAlN is largely suppressed compared to GaN. The microscopic analysis from the orbital projected electronic density of states and the electron localization function further provides insight that the alloying process weakens the polarization of bonding in GaAlN alloy and leads to the increased thermal conductivity. The exceptionally high thermal conductivity of the Ga Al N alloys and the underlying mechanism as revealed in this study would bring valuable insight for the future research of materials with applications in high-performance thermal management.

摘要

合金化是一种广泛应用于调节材料性能的方法,特别是对于热导率而言,热导率在电子设备的工作可靠性和热电器件的能量转换效率中起着关键作用。通常,合金的热导率被认为与其母体材料相比是最小的。然而,本研究中的发现为合金化对热输运的调制带来了一些不同的观点。通过基于第一性原理计算求解玻尔兹曼输运方程(BTE),对单层GaN、AlN及其GaAlN合金的热输运性质进行了比较研究。发现GaAlN合金(29.57 Wm K)和GaAlN合金(21.49 Wm K)的热导率异常高,介于AlN(74.42 Wm K)和GaN(14.92 Wm K)之间,这违背了合金化通常会降低热导率的传统认知。其机理在于,Al原子的存在减小了GaAlN合金的原子半径和质量差异,这也在18 THz左右诱导出一个孤立的光学声子分支。结果,与GaN相比,GaAlN的散射相空间在很大程度上受到抑制。从轨道投影电子态密度和电子局域函数进行的微观分析进一步表明,合金化过程削弱了GaAlN合金中键合的极化,导致热导率增加。本研究揭示的GaAlN合金异常高的热导率及其潜在机理将为高性能热管理应用材料的未来研究带来有价值的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验