Ong Zhun-Yong, Cai Yongqing, Zhang Gang, Zhang Yong-Wei
Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore.
Institute of Applied Physics and Materials Engineering, University of Macau, Macau, CHINA.
Nanotechnology. 2020 Dec 9. doi: 10.1088/1361-6528/abd208.
Understanding the physical processes involved in interfacial heat transfer is critical for the interpretation of thermometric measurements and the optimization of heat dissipation in nanoelectronic devices that are based on transition metal dichalcogenide (TMD) semiconductors. We model the phononic and electronic contributions to the thermal boundary conductance (TBC) variability for the MoS-SiOand WS-SiOinterface. A phenomenological theory to model diffuse phonon transport at disordered interfaces is introduced and yields= 13.5 and 12.4 MW/K/mat 300 K for the MoS-SiOand WS-SiOinterface, respectively. We compare its predictions to those of the coherent phonon model and find that the former fits the MoS-SiOdata from experiments and simulations significantly better. Our analysis suggests that heat dissipation at the TMD-SiOinterface is dominated by phonons scattered diffusely by the rough interface although the electronic TBC contribution can be significant even at low electron densities (= 10cm) and may explain some of the variation in the experimental TBC data from the literature. The physical insights from our study can be useful for the development of thermally aware designs in TMD-based nanoelectronics.
理解界面传热所涉及的物理过程对于解释基于过渡金属二硫属化物(TMD)半导体的纳米电子器件中的温度测量以及优化散热至关重要。我们对MoS - SiO和WS - SiO界面的热边界电导(TBC)变化的声子和电子贡献进行了建模。引入了一种用于对无序界面处的漫射声子输运进行建模的唯象理论,在300 K时,MoS - SiO和WS - SiO界面的该理论结果分别为13.5和12.4 MW/K/m²。我们将其预测结果与相干声子模型的预测结果进行了比较,发现前者与实验和模拟得到的MoS - SiO数据拟合得明显更好。我们的分析表明,TMD - SiO界面处的散热主要由粗糙界面漫散射的声子主导,尽管即使在低电子密度(= 10¹² cm⁻²)下电子TBC贡献也可能很显著,并且这可能解释了文献中实验TBC数据的一些变化。我们研究中的物理见解对于基于TMD的纳米电子学中热感知设计的发展可能是有用的。