Ye Fan, Liu Qingchang, Xu Baoxing, Feng Philip X-L, Zhang Xian
Department of Electrical, Computer, & Systems Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
Small. 2023 Mar;19(12):e2205726. doi: 10.1002/smll.202205726. Epub 2023 Feb 7.
Heat dissipation is a major limitation of high-performance electronics. This is especially important in emerging nanoelectronic devices consisting of ultra-thin layers, heterostructures, and interfaces, where enhancement in thermal transport is highly desired. Here, ultra-high interfacial thermal conductance in encapsulated van der Waals (vdW) heterostructures with single-layer transition metal dichalcogenides MX (MoS , WSe , WS ) sandwiched between two hexagonal boron nitride (hBN) layers is reported. Through Raman spectroscopic measurements of suspended and substrate-supported hBN/MX /hBN heterostructures with varying laser power and temperature, the out-of-plane interfacial thermal conductance in the vertical stack is calibrated. The measured interfacial thermal conductance between MX and hBN reaches 74 ± 25 MW m K , which is at least ten times higher than the interfacial thermal conductance of MX in non-encapsulation structures. Molecular dynamics (MD) calculations verify and explain the experimental results, suggesting a full encapsulation by hBN layers is accounting for the high interfacial conductance. This ultra-high interfacial thermal conductance is attributed to the double heat transfer pathways and the clean and tight vdW interface between two crystalline 2D materials. The findings in this study reveal new thermal transport mechanisms in hBN/MX /hBN structures and shed light on building novel hBN-encapsulated nanoelectronic devices with enhanced thermal management.
散热是高性能电子产品的一个主要限制因素。这在由超薄层、异质结构和界面组成的新兴纳米电子器件中尤为重要,在这些器件中,热传输的增强是非常需要的。在此,报道了在两层六方氮化硼(hBN)层之间夹有单层过渡金属二卤化物MX(MoS 、WSe 、WS )的封装范德华(vdW)异质结构中具有超高的界面热导率。通过对悬浮和衬底支撑的hBN/MX /hBN异质结构进行不同激光功率和温度下的拉曼光谱测量,校准了垂直堆叠结构中的面外界面热导率。测量得到的MX与hBN之间的界面热导率达到74±25 MW m K ,这至少比非封装结构中MX的界面热导率高十倍。分子动力学(MD)计算验证并解释了实验结果,表明hBN层的完全封装是导致高界面热导率的原因。这种超高的界面热导率归因于双传热途径以及两种晶体二维材料之间清洁且紧密的vdW界面。本研究中的发现揭示了hBN/MX /hBN结构中的新热传输机制,并为构建具有增强热管理的新型hBN封装纳米电子器件提供了思路。