Foss Cameron, Aksamija Zlatan
Department of Electrical and Computer Engineering, University of Massachusetts, Amherst MA, United States of America.
Nanotechnology. 2021 Jul 15;32(40). doi: 10.1088/1361-6528/ac0d7d.
Two-dimensional (2D) materials have emerged as a platform for a broad array of future nanoelectronic devices. Here we use first-principles calculations and phonon interface transport modeling to calculate the temperature-dependent thermal boundary conductance (TBC) in single layers of beyond-graphene 2D materials silicene, hBN, boron arsenide (BAs), and blue and black phosphorene (BP) on amorphous SiOand crystalline GaN substrates. Our results show that for 2D/3D systems, the room temperature TBC can span a wide range from 7 to 70 MW mK with the lowest being for BP and highest for hBN. We also show that 2D/3D TBC has a strong temperature dependence that can be alleviated by encapsulating the 2D/3D stack. Upon encapsulation with AlO, the TBC of several beyond-graphene 2D materials can match or exceed reported values for graphene and numerous transition-metal dichalcogendies which are in the range of 15-40 MW mK. We also compute the room temperature TBC as a function of van der Waals spring coupling () where the TBC falls in the range of 50-150 MW mK at coupling strengths of = 2-4 N m for silicene, BAs, and blue phosphorene. We further identify group III-V materials with ultra-soft flexural branches as being promising 2D materials for thermal isolation and energy scavenging applications when matched with crystalline substrates.
二维(2D)材料已成为众多未来纳米电子器件的平台。在此,我们使用第一性原理计算和声子界面输运模型,来计算非晶态SiO和晶体GaN衬底上的单层石墨烯之外的二维材料硅烯、六方氮化硼(hBN)、砷化硼(BAs)以及蓝磷和黑磷(BP)中与温度相关的热边界电导(TBC)。我们的结果表明,对于二维/三维(2D/3D)系统,室温下的热边界电导可在7至70 MW mK的宽范围内变化,其中BP的最低,hBN的最高。我们还表明,二维/三维热边界电导具有很强的温度依赖性,通过封装二维/三维堆叠结构可以缓解这种依赖性。在用AlO封装后,几种石墨烯之外的二维材料的热边界电导可以达到或超过报道的石墨烯和许多过渡金属二硫族化合物的热边界电导值,后者的范围在15 - 40 MW mK之间。我们还计算了室温下热边界电导作为范德华弹簧耦合()的函数,对于硅烯、BAs和蓝磷,在耦合强度 = 2 - 4 N m时,热边界电导落在50 - 150 MW mK的范围内。我们进一步确定,当与晶体衬底匹配时,具有超软弯曲分支的III - V族材料是用于热隔离和能量收集应用的有前途的二维材料。