Novo Nordisk A/S, Novo Nordisk Park, 2760, Maaloev, Denmark.
Gubra, 2970, Hoersholm, Denmark.
Sci Rep. 2020 Dec 9;10(1):21523. doi: 10.1038/s41598-020-78632-4.
Complications of atherosclerosis are the leading cause of morbidity and mortality worldwide. Various genetically modified mouse models are used to investigate disease trajectory with classical histology, currently the preferred methodology to elucidate plaque composition. Here, we show the strength of light-sheet fluorescence microscopy combined with deep learning image analysis for characterising and quantifying plaque burden and composition in whole aorta specimens. 3D imaging is a non-destructive method that requires minimal ex vivo handling and can be up-scaled to large sample sizes. Combined with deep learning, atherosclerotic plaque in mice can be identified without any ex vivo staining due to the autofluorescent nature of the tissue. The aorta and its branches can subsequently be segmented to determine how anatomical position affects plaque composition and progression. Here, we find the highest plaque accumulation in the aortic arch and brachiocephalic artery. Simultaneously, aortas can be stained for markers of interest (for example the pan immune cell marker CD45) and quantified. In ApoE-/- mice we observe that levels of CD45 reach a plateau after which increases in plaque volume no longer correlate to immune cell infiltration. All underlying code is made publicly available to ease adaption of the method.
动脉粥样硬化的并发症是全世界发病率和死亡率的主要原因。各种基因修饰小鼠模型被用于通过经典组织学研究疾病轨迹,目前这是阐明斑块成分的首选方法。在这里,我们展示了光片荧光显微镜结合深度学习图像分析在整个主动脉标本中对斑块负担和成分进行特征描述和定量的优势。3D 成像是非破坏性方法,需要最小的离体处理,并且可以扩展到大样本量。结合深度学习,由于组织的自发荧光性质,无需任何离体染色即可识别小鼠中的动脉粥样硬化斑块。随后可以对主动脉及其分支进行分割,以确定解剖位置如何影响斑块的组成和进展。在这里,我们发现主动脉弓和头臂动脉中斑块堆积最高。同时,主动脉可以对感兴趣的标志物(例如,通用免疫细胞标志物 CD45)进行染色和定量。在 ApoE-/- 小鼠中,我们观察到 CD45 水平达到平台期后,斑块体积的增加不再与免疫细胞浸润相关。所有基础代码都公开提供,以便于该方法的改编。