Suppr超能文献

Saccharomyces cerevisiae strains sensitive to inorganic mercury. III. Tyrosine uptake.

作者信息

Ono B, Sakamoto E, Yamaguchi K

机构信息

Laboratory of Environmental Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan.

出版信息

Curr Genet. 1987;11(5):399-406. doi: 10.1007/BF00378183.

Abstract

In Saccharomyces cerevisiae, the HGS2-1 allele confers sensitivities to inorganis mercury (Ono and Sakamoto 1985) and to excess fermentable sugars such as glucose (Sakamoto et al. 1985); exogenous tyrosine antagonizes both inorganic mercury and excess glucose. In this study, the inorganic mercury sensitive strain has been shown to have about twice more glucose-1,6-bisphosphate and slightly less pyruvate than the normal strains, suggesting that the inorganic mercury sensitive strain has the reduced aldolase activity. It has been also shown that the growth retarded cells accumulate trehalose, by which the lower level of glucose-6-phosphate in the inorganic mercury sensitive strain is accounted for, and that inorganic mercury, presumably excess glucose also, causes growth inhibition via depletion of cellular tyrosine. The mechanism how cellular tyrosine is depleted by inorganic mercury or excess glucose is accounted for by the facts that (1) the tyrosine uptake activity is decreased with increase of glucose concentration in growth medium, (2) HGS2-1 enhances the effect of glucose on the tyrosine uptake activity, and (3) inorganic mercury inhibits the tyrosine uptake system by binding to its SH-group(s). Thus, it is concluded that the role of tyrosine is not to detoxify inorganic mercury nor excess fermentable sugars but simply to counteract depletion of cellular tyrosine induced by them.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验