Suppr超能文献

操纵有机材料中暗激发态的动力学用于光治疗学。

Manipulating the Dynamics of Dark Excited States in Organic Materials for Phototheranostics.

机构信息

Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.

Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States.

出版信息

Acc Chem Res. 2021 Feb 2;54(3):697-706. doi: 10.1021/acs.accounts.0c00688. Epub 2020 Dec 10.

Abstract

Manipulating the dynamics of dark excited states (DESs), such as higher excited singlet or excited triplet states with no or small radiative decay, are of both fundamental and practical interests, an important application being photoactivated diagnosis and therapy (phototheranostics), which include photoacoustic (PA) imaging, photodynamic therapy (PDT), and photothermal therapy (PTT). However, the current understanding of DESs in organic structures is rather limited, thus making any rational manipulation of DES in organic materials very challenging.A DES decays primarily by radiationless transition through two pathways: (i) singlet-to-triplet intersystem crossing (ISC) and (ii) internal conversion (IC) relaxation. The deactivation of a DES via ISC can generate cytotoxic reactive oxygen species (ROS) for PDT, while IC could convert photons into heat for PA imaging and PTT. In this Account, we highlight our research on developing a fundamental understanding of structure-property relationships for manipulation of DESs in organic materials in relation to phototheranostic applications. We describe the application of femtosecond transient absorption (fs-TA) spectroscopy for obtaining valuable insights into the DES dynamics. Afterward, we present our work on DESs in nonrigid molecules that revealed greatly enhanced ISC through geometry twisting, which leads to an innovative pathway to develop organic materials exhibiting external stimuli-responsive reversible switching of ISC. We introduce the concept of smart PDT where highly efficient ISC imparted by geometry twisting in the acidic environment specific to tumors leads to very efficient and highly localized PDT, thus leaving surrounding healthy tissues at a different pH unaffected. This insightful understanding of ISC can lead to the development of more advanced photosensitizers for PDT. Two other emergent concepts from our work presented here are (1) significantly enhanced IC producing strong local heating by combining two-photon absorption with excited state absorption for cumulative multiphoton absorption, thus greatly increasing the strength of the PA signal for nonlinear PA imaging, and (2) shown by an example of an organic molecule, BODIPY, nanoscale charge-transfer state mediated strong IC in aggregate nanoparticles resulting in exceptionally high photothermal conversion efficiency of 61% for both PA and PTT. Some results of the phototheranostic studies using BODIPY are presented, providing an elegant example of nanoscale manipulation of the excited state dynamics.This Account concludes with a summary and discussion of future perspectives. We hope this Account will deepen the understanding of molecular and nanoscale control of excited state dynamics in organic materials, hopefully enticing a broad range of scientists within different disciplinary areas.

摘要

操纵暗激发态(DESs)的动力学,例如具有无辐射衰减或小辐射衰减的更高激发单线态或激发三线态,具有基础和实际意义,一个重要的应用是光激活诊断和治疗(光疗),包括光声(PA)成像、光动力疗法(PDT)和光热疗法(PTT)。然而,目前对有机结构中 DESs 的理解相当有限,因此使得在有机材料中对 DESs 进行任何合理的操纵都极具挑战性。

DESs 主要通过两种途径无辐射跃迁衰减:(i)单线态-三线态系间窜越(ISC)和(ii)内转换(IC)弛豫。通过 ISC 使 DESs 失活可以产生用于 PDT 的细胞毒性活性氧(ROS),而 IC 可以将光子转化为热量用于 PA 成像和 PTT。在本报告中,我们强调了我们在开发与光疗应用相关的有机材料中操纵 DESs 的结构-性质关系的基本理解方面的研究。我们描述了飞秒瞬态吸收(fs-TA)光谱在获得有关 DES 动力学的有价值的见解方面的应用。之后,我们介绍了我们在非刚性分子中 DESs 的工作,该工作通过几何扭曲大大增强了 ISC,从而为开发在肿瘤特有的酸性环境下具有外部刺激响应可逆ISC 切换的有机材料开辟了新途径。我们引入了智能 PDT 的概念,其中在肿瘤特有的酸性环境中通过几何扭曲赋予的高效 ISC 导致非常高效和高度局部化的 PDT,从而使周围在不同 pH 值下的健康组织不受影响。对 ISC 的这种深入理解可以为 PDT 开发更先进的光敏剂。这里介绍的我们工作的另外两个新兴概念是(1)通过将双光子吸收与激发态吸收相结合进行累积多光子吸收,显著增强了产生强局部加热的 IC,从而大大增强了非线性 PA 成像的 PA 信号强度,以及(2)以有机分子 BODIPY 为例,在聚集纳米颗粒中纳米级电荷转移态介导的强 IC 导致异常高的光热转换效率为 61%,用于 PA 和 PTT。介绍了使用 BODIPY 的光疗研究的一些结果,为在有机材料中激发态动力学的纳米级操纵提供了一个优雅的例子。

本报告以总结和讨论未来展望结束。我们希望本报告将加深对有机材料中激发态动力学的分子和纳米级控制的理解,希望吸引不同学科领域的广泛科学家。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验