School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA.
Science. 2020 Dec 11;370(6522). doi: 10.1126/science.abb9772.
Emerging infectious diseases pose one of the greatest threats to human health and biodiversity. Phylodynamics is often used to infer epidemiological parameters essential for guiding intervention strategies for human viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). Here, we applied phylodynamics to elucidate the epidemiological dynamics of Tasmanian devil facial tumor disease (DFTD), a fatal, transmissible cancer with a genome thousands of times larger than that of any virus. Despite prior predictions of devil extinction, transmission rates have declined precipitously from ~3.5 secondary infections per infected individual to ~1 at present. Thus, DFTD appears to be transitioning from emergence to endemism, lending hope for the continued survival of the endangered Tasmanian devil. More generally, our study demonstrates a new phylodynamic analytical framework that can be applied to virtually any pathogen.
新发传染病对人类健康和生物多样性构成了最大的威胁之一。系统发生动力学常用于推断严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2 等人类病毒的重要流行病学参数,以指导干预策略。在这里,我们应用系统发生动力学来阐明塔斯马尼亚恶魔面部肿瘤病(DFTD)的流行病学动态,DFTD 是一种致命的、可传播的癌症,其基因组比任何病毒都大几千倍。尽管此前曾预测恶魔会灭绝,但传播速度已从每感染个体约 3.5 次继发感染急剧下降到目前的约 1 次。因此,DFTD 似乎正在从出现过渡到地方病,这为濒危的塔斯马尼亚恶魔的持续生存带来了希望。更广泛地说,我们的研究展示了一个新的系统发生动力学分析框架,几乎可以应用于任何病原体。