在永冻层融化过程中,铁矿物的溶解会释放出铁和与之相关的有机碳。
Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw.
机构信息
Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany.
Chair of Soil Science, Technical University Muenchen, Freising, Germany.
出版信息
Nat Commun. 2020 Dec 10;11(1):6329. doi: 10.1038/s41467-020-20102-6.
It has been shown that reactive soil minerals, specifically iron(III) (oxyhydr)oxides, can trap organic carbon in soils overlying intact permafrost, and may limit carbon mobilization and degradation as it is observed in other environments. However, the use of iron(III)-bearing minerals as terminal electron acceptors in permafrost environments, and thus their stability and capacity to prevent carbon mobilization during permafrost thaw, is poorly understood. We have followed the dynamic interactions between iron and carbon using a space-for-time approach across a thaw gradient in Abisko (Sweden), where wetlands are expanding rapidly due to permafrost thaw. We show through bulk (selective extractions, EXAFS) and nanoscale analysis (correlative SEM and nanoSIMS) that organic carbon is bound to reactive Fe primarily in the transition between organic and mineral horizons in palsa underlain by intact permafrost (41.8 ± 10.8 mg carbon per g soil, 9.9 to 14.8% of total soil organic carbon). During permafrost thaw, water-logging and O limitation lead to reducing conditions and an increase in abundance of Fe(III)-reducing bacteria which favor mineral dissolution and drive mobilization of both iron and carbon along the thaw gradient. By providing a terminal electron acceptor, this rusty carbon sink is effectively destroyed along the thaw gradient and cannot prevent carbon release with thaw.
已经表明,反应性土壤矿物质,特别是铁(III)(氧)氢氧化物,可以在未受干扰的永冻层上的土壤中捕获有机碳,并可能限制碳的迁移和降解,就像在其他环境中观察到的那样。然而,铁(III)矿物作为终端电子受体在永冻层环境中的作用,以及它们在永冻层融化过程中防止碳迁移的稳定性和能力,还了解甚少。我们通过在因永冻层融化而迅速扩张的阿比斯库(瑞典)的融区梯度上进行时空替代方法,跟踪了铁和碳之间的动态相互作用。我们通过整体(选择性提取、EXAFS)和纳米尺度分析(相关 SEM 和 nanoSIMS)表明,有机碳主要与反应性铁结合,位于未受干扰的永冻层下的冰核中的有机和矿物层之间(每克土壤中结合有 41.8 ± 10.8 毫克碳,占总土壤有机碳的 9.9%至 14.8%)。在永冻层融化过程中,水饱和和 O 限制导致还原条件增加,铁(III)还原菌的丰度增加,有利于矿物溶解,并沿融区梯度驱动铁和碳的迁移。通过提供终端电子受体,这种生锈的碳汇沿融区梯度有效地被破坏,无法阻止碳随融解释放。