Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany.
Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria.
Glob Chang Biol. 2018 Aug;24(8):3401-3415. doi: 10.1111/gcb.14316. Epub 2018 Jun 1.
Climate change in Arctic ecosystems fosters permafrost thaw and makes massive amounts of ancient soil organic carbon (OC) available to microbial breakdown. However, fractions of the organic matter (OM) may be protected from rapid decomposition by their association with minerals. Little is known about the effects of mineral-organic associations (MOA) on the microbial accessibility of OM in permafrost soils and it is not clear which factors control its temperature sensitivity. In order to investigate if and how permafrost soil OC turnover is affected by mineral controls, the heavy fraction (HF) representing mostly MOA was obtained by density fractionation from 27 permafrost soil profiles of the Siberian Arctic. In parallel laboratory incubations, the unfractionated soils (bulk) and their HF were comparatively incubated for 175 days at 5 and 15°C. The HF was equivalent to 70 ± 9% of the bulk CO respiration as compared to a share of 63 ± 1% of bulk OC that was stored in the HF. Significant reduction of OC mineralization was found in all treatments with increasing OC content of the HF (HF-OC), clay-size minerals and Fe or Al oxyhydroxides. Temperature sensitivity (Q10) decreased with increasing soil depth from 2.4 to 1.4 in the bulk soil and from 2.9 to 1.5 in the HF. A concurrent increase in the metal-to-HF-OC ratios with soil depth suggests a stronger bonding of OM to minerals in the subsoil. There, the younger C signature in CO than that of the OC indicates a preferential decomposition of the more recent OM and the existence of a MOA fraction with limited access of OM to decomposers. These results indicate strong mineral controls on the decomposability of OM after permafrost thaw and on its temperature sensitivity. Thus, we here provide evidence that OM temperature sensitivity can be attenuated by MOA in permafrost soils.
北极生态系统的气候变化促进了永久冻土的解冻,使大量古老的土壤有机碳 (OC) 可供微生物分解。然而,有机物质 (OM) 的某些部分可能由于与矿物质的结合而受到保护,使其免受快速分解的影响。对于矿物质-有机物质结合物 (MOA) 对永久冻土土壤中 OM 的微生物可利用性的影响以及哪些因素控制其温度敏感性,人们知之甚少。为了研究永久冻土土壤 OC 转化是否受到矿物质控制的影响以及如何受到影响,通过密度分级从西伯利亚北极的 27 个永久冻土土壤剖面中获得了重质部分 (HF),HF 主要代表 MOA。在平行的实验室培养中,对未分级的土壤(原状土)及其 HF 进行了 175 天的比较培养,温度分别为 5 和 15°C。HF 相当于原状土 CO 呼吸的 70 ± 9%,而 HF 中储存的原状土 OC 则占 63 ± 1%。随着 HF-OC、粘土矿物和 Fe 或 Al 氢氧化物含量的增加,所有处理中 OC 矿化的显著减少。随着原状土从表层到深层,Q10 值从 2.4 降低到 1.4,HF 从 2.9 降低到 1.5。随着土壤深度的增加,金属与 HF-OC 比值的同步增加表明,OM 与亚表层矿物质的结合更加牢固。在那里,CO 中的 13C 比 OC 中的 13C 年轻,这表明最近的 OM 优先分解,并且存在一种 MOA 分数,OM 对分解者的可利用性有限。这些结果表明,在永久冻土融化后,矿物质对 OM 的可分解性及其温度敏感性具有很强的控制作用。因此,我们在这里提供的证据表明,在永久冻土土壤中,MOA 可以减轻 OM 的温度敏感性。