Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China.
Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA.
Nat Commun. 2020 May 7;11(1):2255. doi: 10.1038/s41467-020-16071-5.
Soil organic matter (SOM) is correlated with reactive iron (Fe) in humid soils, but Fe also promotes SOM decomposition when oxygen (O) becomes limited. Here we quantify Fe-mediated OM protection vs. decomposition by adding C dissolved organic matter (DOM) and Fe to soil slurries incubated under static or fluctuating O. We find Fe uniformly protects OM only under static oxic conditions, and only when Fe and DOM are added together: de novo reactive Fe phases suppress DOM and SOM mineralization by 35 and 47%, respectively. Conversely, adding Fe alone increases SOM mineralization by 8% following oxidation to Fe. Under O limitation, de novo reactive Fe phases are preferentially reduced, increasing anaerobic mineralization of DOM and SOM by 74% and 32‒41%, respectively. Periodic O limitation is common in humid soils, so Fe does not intrinsically protect OM; rather reactive Fe phases require their own physiochemical protection to contribute to OM persistence.
土壤有机质(SOM)与潮湿土壤中的反应性铁(Fe)相关,但当氧气(O)变得有限时,Fe 也会促进 SOM 分解。在这里,我们通过向土壤悬浮液中添加溶解的有机碳(DOM)和 Fe 来量化 Fe 介导的 OM 保护与分解,这些悬浮液在静态或波动的 O 下孵育。我们发现,Fe 仅在静态好氧条件下均匀地保护 OM,并且只有在同时添加 Fe 和 DOM 时才会如此:新形成的反应性 Fe 相分别抑制 DOM 和 SOM 矿化 35%和 47%。相反,单独添加 Fe 会在氧化为 Fe 后增加 SOM 矿化 8%。在 O 限制下,新形成的反应性 Fe 相优先被还原,分别增加 DOM 和 SOM 的厌氧矿化 74%和 32-41%。周期性的 O 限制在潮湿土壤中很常见,因此 Fe 并不会内在地保护 OM;相反,反应性 Fe 相需要自身的物理化学保护才能有助于 OM 的持久性。
Glob Chang Biol. 2013-7-14
Environ Sci Technol. 2018-7-3
Environ Sci Technol. 2018-12-7
Ecotoxicol Environ Saf. 2023-7-1
Environ Sci Technol. 2023-6-27
Environ Sci Technol. 2025-3-25
Environ Sci Technol. 2025-3-11
Microorganisms. 2025-1-15
Environ Sci Technol. 2018-12-7
Sci Total Environ. 2018-9-21
Environ Sci Technol. 2018-7-3
Environ Sci Technol. 2017-12-21
Environ Sci Technol. 2017-2-28
Nature. 2015-11-23
Ecology. 2015-7