Geomicrobiology, Department of Geosciences, University of Tübingen, Schnarrenbergstrasse 94-96, 72076 Tübingen, Germany.
Analytical Biogeochemistry, Helmholtz Center Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
Environ Sci Process Impacts. 2024 Aug 14;26(8):1322-1335. doi: 10.1039/d4em00241e.
Future permafrost thaw will likely lead to substantial release of greenhouse gases due to thawing of previously unavailable organic carbon (OC). Accurate predictions of this release are limited by poor knowledge of the bioavailability of mobilized OC during thaw. Organic carbon bioavailability decreases due to adsorption to, or coprecipitation with, poorly crystalline ferric iron (Fe(III)) (oxyhydr)oxide minerals but the maximum binding extent and binding selectivity of permafrost OC to these minerals is unknown. We therefore utilized water-extractable organic matter (WEOM) from soils across a permafrost thaw gradient to quantify adsorption and coprecipitation processes with poorly crystalline Fe(III) (oxyhydr)oxides. We found that the maximum adsorption capacity of WEOM from intact and partly thawed permafrost soils was similar (204 and 226 mg C g ferrihydrite, respectively) but decreased to 81 mg C g ferrihydrite for WEOM from the fully thawed site. In comparison, coprecipitation of WEOM from intact and partly thawed soils with Fe immobilized up to 925 and 1532 mg C g Fe respectively due to formation of precipitated Fe(III)-OC phases. Analysis of the OC composition before and after adsorption/coprecipitation revealed that high molecular weight, oxygen-rich, carboxylic- and aromatic-rich OC was preferentially bound to Fe(III) minerals relative to low molecular weight, aliphatic-rich compounds which may be more bioavailable. This selective binding effect was stronger after adsorption than coprecipitation. Our results suggest that OC binding by Fe(III) (oxyhydr)oxides sharply decreases under fully thawed conditions and that small, aliphatic OC molecules that may be readily bioavailable are less protected across all thaw stages.
未来多年冻土的融化可能会导致大量温室气体的释放,这是由于以前无法获得的有机碳(OC)的融化。由于在解冻过程中对移动 OC 的生物可利用性缺乏了解,因此对这种释放的准确预测受到限制。由于吸附或共沉淀到结晶不良的三价铁(Fe(III))(氧氢)氧化物矿物上,有机碳的生物可利用性会降低,但多年冻土 OC 对这些矿物的最大结合程度和结合选择性是未知的。因此,我们利用多年冻土解冻梯度上土壤中的可提取有机物质(WEOM)来量化与结晶不良的 Fe(III)(氧氢)氧化物的吸附和共沉淀过程。我们发现,完整和部分解冻多年冻土土壤中 WEOM 的最大吸附容量相似(分别为 204 和 226mg C g 水铁矿),但对于完全解冻地点的 WEOM,吸附容量下降到 81mg C g 水铁矿。相比之下,由于形成沉淀的 Fe(III)-OC 相,完整和部分解冻土壤中 WEOM 的共沉淀使 Fe 固定的 OC 分别高达 925 和 1532mg C g Fe。对吸附/共沉淀前后 OC 组成的分析表明,与低分子量、富含脂肪族的化合物相比,高分子量、富含氧、羧酸和芳香族的 OC 更优先与 Fe(III)矿物结合,后者可能更具生物可利用性。这种选择性结合效应在吸附后比共沉淀更强。我们的结果表明,在完全解冻条件下,Fe(III)(氧氢)氧化物对 OC 的结合急剧下降,并且在所有解冻阶段,可能更容易生物利用的小分子量、脂肪族 OC 分子受到的保护较少。