DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
Faculty of Bioscience, Heidelberg University, Heidelberg, 69120, Germany.
Commun Biol. 2020 Dec 10;3(1):751. doi: 10.1038/s42003-020-01481-4.
Inactivating mutations affecting key mismatch repair (MMR) components lead to microsatellite instability (MSI) and cancer. However, a number of patients with MSI-tumors do not present alterations in classical MMR genes. Here we discovered that specific missense mutations in the MutL homolog MLH2, which is dispensable for MMR, confer a dominant mutator phenotype in S. cerevisiae. MLH2 mutations elevated frameshift mutation rates, and caused accumulation of long-lasting nuclear MMR foci. Both aspects of this phenotype were suppressed by mutations predicted to prevent the binding of Mlh2 to DNA. Genetic analysis revealed that mlh2 dominant mutations interfere with both Exonuclease 1 (Exo1)-dependent and Exo1-independent MMR. Lastly, we demonstrate that a homolog mutation in human hPMS1 results in a dominant mutator phenotype. Our data support a model in which yeast Mlh1-Mlh2 or hMLH1-hPMS1 mutant complexes act as roadblocks on DNA preventing MMR, unraveling a novel mechanism that can account for MSI in human cancer.
失活突变影响关键的错配修复(MMR)组件会导致微卫星不稳定(MSI)和癌症。然而,许多 MSI 肿瘤患者并没有出现经典 MMR 基因的改变。在这里,我们发现 MutL 同源物 MLH2 中的特定错义突变,这些突变对于 MMR 是可有可无的,在酿酒酵母中赋予了显性突变体表型。MLH2 突变提高了移码突变率,并导致长时间核 MMR 焦点的积累。这种表型的两个方面都被预测可以防止 Mlh2 与 DNA 结合的突变所抑制。遗传分析表明,mlh2 显性突变干扰了 Exo1 依赖和 Exo1 独立的 MMR。最后,我们证明了人 hPMS1 中的同源突变导致了显性突变体表型。我们的数据支持这样一种模型,即酵母 Mlh1-Mlh2 或 hMLH1-hPMS1 突变复合物在 DNA 上充当阻止 MMR 的障碍,揭示了一种可以解释人类癌症中 MSI 的新机制。