DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany.
Faculty of Bioscience, Heidelberg University, Heidelberg D-69120, Germany.
Nucleic Acids Res. 2019 Jan 10;47(1):237-252. doi: 10.1093/nar/gky1154.
The balance and the overall concentration of intracellular deoxyribonucleoside triphosphates (dNTPs) are important determinants of faithful DNA replication. Despite the established fact that changes in dNTP pools negatively influence DNA replication fidelity, it is not clear why certain dNTP pool alterations are more mutagenic than others. As intracellular dNTP pools are mainly controlled by ribonucleotide reductase (RNR), and given the limited number of eukaryotic RNR mutations characterized so far, we screened for RNR1 mutations causing mutator phenotypes in Saccharomyces cerevisiae. We identified 24 rnr1 mutant alleles resulting in diverse mutator phenotypes linked in most cases to imbalanced dNTPs. Among the identified rnr1 alleles the strongest mutators presented a dNTP imbalance in which three out of the four dNTPs were elevated (dCTP, dTTP and dGTP), particularly if dGTP levels were highly increased. These rnr1 alleles caused growth defects/lethality in DNA replication fidelity-compromised backgrounds, and caused strong mutator phenotypes even in the presence of functional DNA polymerases and mismatch repair. In summary, this study pinpoints key residues that contribute to allosteric regulation of RNR's overall activity or substrate specificity. We propose a model that distinguishes between different dNTP pool alterations and provides a mechanistic explanation why certain dNTP imbalances are particularly detrimental.
细胞内脱氧核糖核苷三磷酸 (dNTP) 的平衡和总体浓度是忠实复制 DNA 的重要决定因素。尽管已经确立了 dNTP 池的变化会对 DNA 复制保真度产生负面影响的事实,但不清楚为什么某些 dNTP 池的改变比其他改变更具诱变性。由于细胞内的 dNTP 池主要受核糖核苷酸还原酶 (RNR) 控制,并且考虑到迄今为止已经确定的真核生物 RNR 突变数量有限,我们在酿酒酵母中筛选导致诱变表型的 RNR1 突变。我们鉴定了 24 个 rnr1 突变等位基因,导致了多种诱变表型,这些表型在大多数情况下与不平衡的 dNTP 有关。在所鉴定的 rnr1 等位基因中,最强的诱变剂表现出 dNTP 失衡,其中四种 dNTP 中有三种升高(dCTP、dTTP 和 dGTP),特别是如果 dGTP 水平显著升高。这些 rnr1 等位基因在 DNA 复制保真度受损的背景下导致生长缺陷/致死,并在存在功能 DNA 聚合酶和错配修复的情况下引起强烈的诱变表型。总之,这项研究确定了对 RNR 整体活性或底物特异性的变构调节有贡献的关键残基。我们提出了一个模型,该模型区分了不同的 dNTP 池改变,并提供了一个机制解释,说明为什么某些 dNTP 失衡特别有害。