Suppr超能文献

用于同时检测误解并估计能力的灵活计算机自适应测试

Flexible Computerized Adaptive Tests to Detect Misconceptions and Estimate Ability Simultaneously.

作者信息

Bao Yu, Shen Yawei, Wang Shiyu, Bradshaw Laine

机构信息

University of Georgia, Athens, USA.

出版信息

Appl Psychol Meas. 2021 Jan;45(1):3-21. doi: 10.1177/0146621620965730. Epub 2020 Nov 6.

Abstract

The Scaling Individuals and Classifying Misconceptions (SICM) model is an advanced psychometric model that can provide feedback to examinees' misconceptions and a general ability simultaneously. These two types of feedback are represented by a discrete and a continuous latent variable, respectively, in the SICM model. The complex structure of the SICM model brings difficulties in estimating both misconception profile and ability efficiently in a linear test. To overcome this challenge, this study proposes a flexible computerized adaptive test (FCAT) design as a new test delivery method to increase test efficiency by administering an individualized test to examinees. We propose three item selection methods and two transition criteria to determine adaptive steps based on the needs of estimating one or two latent variables. Through two simulation studies, we demonstrate how to select an appropriate item selection method for an adaptive step and what transition criterion should be used between two adaptive steps. Results reveal the combination of the item selection method and the transition criterion could improve the estimation accuracy of a specific latent variable to a different extent and thus provide further guidance in designing an FCAT.

摘要

个体缩放与误解分类(SICM)模型是一种先进的心理测量模型,它可以同时为考生的误解和一般能力提供反馈。在SICM模型中,这两种反馈分别由一个离散的和一个连续的潜在变量表示。SICM模型的复杂结构给在线性测试中有效估计误解概况和能力带来了困难。为了克服这一挑战,本研究提出了一种灵活的计算机自适应测试(FCAT)设计,作为一种新的测试实施方法,通过对考生进行个性化测试来提高测试效率。我们提出了三种项目选择方法和两种转换标准,以根据估计一个或两个潜在变量的需要来确定自适应步骤。通过两项模拟研究,我们展示了如何为自适应步骤选择合适的项目选择方法,以及在两个自适应步骤之间应使用何种转换标准。结果表明,项目选择方法和转换标准的组合可以在不同程度上提高特定潜在变量的估计精度,从而为设计FCAT提供进一步的指导。

相似文献

1
Flexible Computerized Adaptive Tests to Detect Misconceptions and Estimate Ability Simultaneously.
Appl Psychol Meas. 2021 Jan;45(1):3-21. doi: 10.1177/0146621620965730. Epub 2020 Nov 6.
4
Item Selection With Collaborative Filtering in On-The-Fly Multistage Adaptive Testing.
Appl Psychol Meas. 2022 Nov;46(8):690-704. doi: 10.1177/01466216221124089. Epub 2022 Aug 28.
5
Multidimensional Computerized Adaptive Testing for Classifying Examinees With Within-Dimensionality.
Appl Psychol Meas. 2016 Sep;40(6):387-404. doi: 10.1177/0146621616648931. Epub 2016 Jul 28.
6
A LASSO-Based Method for Detecting Item-Trait Patterns of Replenished Items in Multidimensional Computerized Adaptive Testing.
Front Psychol. 2019 Aug 30;10:1944. doi: 10.3389/fpsyg.2019.01944. eCollection 2019.
7
Item selection methods with exposure and time control for computerized classification test.
Br J Math Stat Psychol. 2023 Feb;76(1):52-68. doi: 10.1111/bmsp.12281. Epub 2022 Jul 15.
8
An Adaptive Design for Item Parameter Online Estimation and Q-Matrix Online Calibration in CD-CAT.
Front Psychol. 2021 Aug 24;12:710497. doi: 10.3389/fpsyg.2021.710497. eCollection 2021.
9
Reducing the Misclassification Costs of Cognitive Diagnosis Computerized Adaptive Testing: Item Selection With Minimum Expected Risk.
Appl Psychol Meas. 2022 May;46(3):185-199. doi: 10.1177/01466216211066610. Epub 2022 Mar 1.
10
Multidimensional Computerized Adaptive Testing Using Non-Compensatory Item Response Theory Models.
Appl Psychol Meas. 2019 Sep;43(6):464-480. doi: 10.1177/0146621618800280. Epub 2018 Oct 26.

引用本文的文献

1
Item Selection With Collaborative Filtering in On-The-Fly Multistage Adaptive Testing.
Appl Psychol Meas. 2022 Nov;46(8):690-704. doi: 10.1177/01466216221124089. Epub 2022 Aug 28.

本文引用的文献

1
A joint modeling framework of responses and response times to assess learning outcomes.
Multivariate Behav Res. 2020 Jan-Feb;55(1):49-68. doi: 10.1080/00273171.2019.1607238. Epub 2019 Jun 5.
2
Item Selection Criteria With Practical Constraints in Cognitive Diagnostic Computerized Adaptive Testing.
Educ Psychol Meas. 2019 Apr;79(2):335-357. doi: 10.1177/0013164418790634. Epub 2018 Jul 27.
3
Exploration of Item Selection in Dual-Purpose Cognitive Diagnostic Computerized Adaptive Testing: Based on the RRUM.
Appl Psychol Meas. 2016 Nov;40(8):625-640. doi: 10.1177/0146621616666008. Epub 2016 Sep 24.
4
5
New Item Selection Methods for Cognitive Diagnosis Computerized Adaptive Testing.
Appl Psychol Meas. 2015 May;39(3):167-188. doi: 10.1177/0146621614554650. Epub 2014 Nov 13.
6
On-the-Fly Assembled Multistage Adaptive Testing.
Appl Psychol Meas. 2015 Mar;39(2):104-118. doi: 10.1177/0146621614544519. Epub 2014 Sep 5.
8
Combining CAT with cognitive diagnosis: a weighted item selection approach.
Behav Res Methods. 2012 Mar;44(1):95-109. doi: 10.3758/s13428-011-0143-3.
9
Combining computer adaptive testing technology with cognitively diagnostic assessment.
Behav Res Methods. 2008 Aug;40(3):808-21. doi: 10.3758/brm.40.3.808.
10
The maximum priority index method for severely constrained item selection in computerized adaptive testing.
Br J Math Stat Psychol. 2009 May;62(Pt 2):369-83. doi: 10.1348/000711008X304376. Epub 2008 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验