Martinez-Ledesma Emmanuel, Flores David, Trevino Victor
Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Bioinformática y Diagnóstico Clínico, Monterrey, Nuevo León, Mexico.
Universidad del Caribe, Departamento de Ciencias Básicas e Ingenierías, Cancún, Quintana Roo, Mexico.
Comput Struct Biotechnol J. 2020 Nov 19;18:3567-3576. doi: 10.1016/j.csbj.2020.11.020. eCollection 2020.
Cancer mutations that are recurrently observed among patients are known as hotspots. Hotspots are highly relevant because they are, presumably, likely functional. Known hotspots in BRAF, PIK3CA, TP53, KRAS, IDH1 support this idea. However, hundreds of hotspots have never been validated experimentally. The detection of hotspots nevertheless is challenging because background mutations obscure their statistical and computational identification. Although several algorithms have been applied to identify hotspots, they have not been reviewed before. Thus, in this mini-review, we summarize more than 40 computational methods applied to detect cancer hotspots in coding and non-coding DNA. We first organize the methods in and to provide a general overview. Then, we describe their embed procedures, implementations, variations, and differences. Finally, we discuss some advantages, provide some ideas for future developments, and mention opportunities such as application to viral integrations, translocations, and epigenetics.
在患者中反复观察到的癌症突变被称为热点突变。热点突变高度相关,因为据推测它们可能具有功能。BRAF、PIK3CA、TP53、KRAS、IDH1中的已知热点突变支持了这一观点。然而,数百个热点突变从未经过实验验证。尽管如此,热点突变的检测仍具有挑战性,因为背景突变会掩盖它们的统计和计算识别。虽然已经应用了几种算法来识别热点突变,但此前尚未对它们进行过综述。因此,在本综述中,我们总结了40多种用于检测编码和非编码DNA中癌症热点突变的计算方法。我们首先将这些方法进行分类整理,以提供一个总体概述。然后,我们描述它们的嵌入过程、实现方式、变体和差异。最后,我们讨论一些优点,为未来的发展提供一些思路,并提及一些机会,如应用于病毒整合、易位和表观遗传学。