Wang Keke, Liu Yang, Kawashima Kenta, Yang Xuetao, Yin Xiang, Zhan Faqi, Liu Min, Qiu Xiaoqing, Li Wenzhang, Mullins Charles Buddie, Li Jie
School of Chemistry and Chemical Engineering Central South University Changsha 410083 China.
McKetta Department of Chemical Engineering and Department of Chemistry University of Texas at Austin Austin TX 78712-0231 USA.
Adv Sci (Weinh). 2020 Oct 25;7(23):2002563. doi: 10.1002/advs.202002563. eCollection 2020 Dec.
The glorious charge transfer efficiency of photoanode is an important factor for efficient photoelectrochemical (PEC) water oxidation. However, it is often limited by slow kinetics of oxygen evolution reaction. Herein, a dual transition metal-based metal-organic frameworks (MOF) cocatalyst, Fe@Ni-MOF, is introduced into a titanium-doped hematite (FeO:Ti) photoanode. The combination of Ni and Fe can optimize the filling of 3d orbitals. Moreover, the introduction of Fe donates electrons to Ni in the MOF structure, thus, suppressing the irreversible (long-life-time) oxidation of Ni into Ni. The resulting Fe@Ni-MOF/FeO:Ti photoanode exhibits ∼threefold enhancement in the photocurrent density at 1.23 V versus the reversible hydrogen electrode. Kinetic analysis of the PEC water oxidation processes indicates that this performance improvement is primarily due to modulating the charge transfer efficiency of hematite photoanode. Further results show that a single transition metal-based MOF cocatalyst, Ni-MOF, exhibits slow charge transfer in spite of a reduction in surface charge recombination, resulting in a smaller charge transfer efficiency. These findings provide new insights for the development of photoelectrodes decorated with MOFs.
光阳极出色的电荷转移效率是实现高效光电化学(PEC)水氧化的一个重要因素。然而,它常常受到析氧反应缓慢动力学的限制。在此,一种基于双过渡金属的金属有机框架(MOF)助催化剂Fe@Ni-MOF被引入到掺钛赤铁矿(FeO:Ti)光阳极中。Ni和Fe的组合能够优化3d轨道的填充。此外,Fe的引入会在MOF结构中向Ni提供电子,从而抑制Ni不可逆地(长时间)氧化成Ni²⁺。由此得到的Fe@Ni-MOF/FeO:Ti光阳极在相对于可逆氢电极1.23 V的光电流密度方面表现出约三倍的增强。PEC水氧化过程的动力学分析表明,这种性能提升主要归因于调节了赤铁矿光阳极的电荷转移效率。进一步的结果表明,尽管表面电荷复合有所减少,但单一过渡金属基MOF助催化剂Ni-MOF表现出缓慢的电荷转移,导致电荷转移效率较低。这些发现为开发用MOF修饰的光电极提供了新的见解。