Suppr超能文献

金属有机框架/半导体复合材料的光电化学水氧化

Photoelectrochemical water oxidation by a MOF/semiconductor composite.

作者信息

Gibbons Bradley, Cairnie Daniel R, Thomas Benjamin, Yang Xiaozhou, Ilic Stefan, Morris Amanda J

机构信息

Department of Chemistry, Virginia Polytechnic Institute and State University Virginia 24060 USA

出版信息

Chem Sci. 2023 Mar 23;14(18):4672-4680. doi: 10.1039/d2sc06361a. eCollection 2023 May 10.

Abstract

Artificial photosynthesis is one of the most promising forms of renewable fuel production, due to the abundance of water, carbon dioxide, and sunlight. However, the water oxidation reaction remains a significant bottleneck due to the high thermodynamic and kinetic requirements of the four-electron process. While significant work has been done on the development of catalysts for water splitting, many of the catalysts reported to date operate at high overpotentials or with the use of sacrificial oxidants to drive the reaction. Here, we present a catalyst embedded metal-organic framework (MOF)/semiconductor composite that performs photoelectrochemical oxidation of water at a formal underpotential. Ru-UiO-67 (where Ru stands for the water oxidation catalyst [Ru(tpy)(dcbpy)OH] (tpy = 2,2':6',2''-terpyridine, dcbpy = 5,5-dicarboxy-2,2'-bipyridine)) has been previously shown to be active for water oxidation under both chemical and electrochemical conditions, but here we demonstrate, for the first time, incorporation of a light harvesting n-type semiconductor as a base photoelectrode. Ru-UiO-67/WO is active for photoelectrochemical water oxidation at a thermodynamic underpotential ( ≈ 200 mV; = 600 mV NHE), and incorporation of a molecular catalyst onto the oxide layer increases efficiency of charge transport and separation over bare WO. The charge-separation process was evaluated with ultrafast transient absorption spectroscopy (ufTA) and photocurrent density measurements. These studies suggest that a key contributor to the photocatalytic process involves a hole transfer from excited to Ru-UiO-67. To our knowledge, this is the first report of a MOF-based catalyst active for water oxidation at a thermodynamic underpotential, a key step towards light-driven water oxidation.

摘要

由于水、二氧化碳和阳光的丰富性,人工光合作用是可再生燃料生产中最有前景的形式之一。然而,由于四电子过程对热力学和动力学的高要求,水氧化反应仍然是一个重大瓶颈。虽然在开发用于水分解的催化剂方面已经做了大量工作,但迄今为止报道的许多催化剂都在高过电位下运行,或者使用牺牲性氧化剂来驱动反应。在这里,我们展示了一种嵌入催化剂的金属有机框架(MOF)/半导体复合材料,该材料在形式上的欠电位下进行水的光电化学氧化。Ru-UiO-67(其中Ru代表水氧化催化剂[Ru(tpy)(dcbpy)OH](tpy = 2,2':6',2''-三联吡啶,dcbpy = 5,5-二羧基-2,2'-联吡啶))先前已被证明在化学和电化学条件下对水氧化具有活性,但在这里我们首次展示了将光收集n型半导体作为基础光电极的结合。Ru-UiO-67/WO在热力学欠电位(≈200 mV; = 600 mV NHE)下对光电化学水氧化具有活性,并且在氧化物层上结合分子催化剂提高了电荷传输和分离效率,超过了裸WO。通过超快瞬态吸收光谱(ufTA)和光电流密度测量对电荷分离过程进行了评估。这些研究表明,光催化过程的一个关键因素涉及从激发态到Ru-UiO-67的空穴转移。据我们所知,这是第一份关于基于MOF的催化剂在热力学欠电位下对水氧化具有活性的报告,这是光驱动水氧化的关键一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7f4/10171202/abb658f7e1e6/d2sc06361a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验