Qin Ying, Tan Rong, Wen Jing, Huang Qikang, Wang Hengjia, Liu Mingwang, Li Jinli, Wang Canglong, Shen Yan, Hu Liuyong, Gu Wenling, Zhu Chengzhou
National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology Wuhan 430205 P. R. China
Chem Sci. 2023 Jun 6;14(26):7346-7354. doi: 10.1039/d3sc01523h. eCollection 2023 Jul 5.
Advances in the rational design of semiconductor-electrocatalyst photoelectrodes provide robust driving forces for improving energy conversion and quantitative analysis, while a deep understanding of elementary processes remains underwhelming due to the multistage interfaces involved in semiconductor/electrocatalyst/electrolyte. To address this bottleneck, we have constructed carbon-supported nickel single atoms (Ni SA@C) as an original electron transport layer with catalytic sites of Ni-N and Ni-NO. This approach illustrates the combined effect of photogenerated electron extraction and the surface electron escape ability of the electrocatalyst layer in the photocathode system. Theoretical and experimental studies reveal that Ni-N@C, with excellent oxygen reduction reaction catalytic activity, is more beneficial for alleviating surface charge accumulation and facilitating electrode-electrolyte interfacial electron-injection efficiency under a similar built-in electric field. This instructive method enables us to engineer the microenvironment of the charge transport layer for steering the interfacial charge extract and reaction kinetics, providing a great prospect for atomic scale materials to enhance photoelectrochemical performance.
半导体-电催化剂光电极的合理设计进展为改善能量转换和定量分析提供了强大的驱动力,然而,由于半导体/电催化剂/电解质中涉及的多级界面,对基本过程的深入理解仍然不足。为了解决这一瓶颈,我们构建了碳负载镍单原子(Ni SA@C)作为具有Ni-N和Ni-NO催化位点的原始电子传输层。这种方法说明了光生电子提取和光电阴极系统中电催化剂层表面电子逃逸能力的综合作用。理论和实验研究表明,具有优异氧还原反应催化活性的Ni-N@C在类似的内建电场下更有利于减轻表面电荷积累并提高电极-电解质界面电子注入效率。这种指导性方法使我们能够设计电荷传输层的微环境,以控制界面电荷提取和反应动力学,为原子尺度材料提高光电化学性能提供了广阔前景。