Suppr超能文献

一种用于区分重庆地区川崎病与其他发热性疾病的新诊断模型:一项对10367例患者的回顾性研究

A New Diagnostic Model to Distinguish Kawasaki Disease From Other Febrile Illnesses in Chongqing: A Retrospective Study on 10,367 Patients.

作者信息

Huang Zhilin, Tan Xu-Hai, Wang Haolin, Pan Bo, Lv Tie-Wei, Tian Jie

机构信息

Department of Heart, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.

Department of Pediatric, People's Hospital of Hongan, Hubei, China.

出版信息

Front Pediatr. 2020 Nov 12;8:533759. doi: 10.3389/fped.2020.533759. eCollection 2020.

Abstract

Kawasaki disease (KD) is one of the most prevailing vasculitis among infants and young children, and has become the leading cause of acquired heart disease in childhood. Delayed diagnosis of KD can lead to serious cardiovascular complications. We sought to create a diagnostic model to help distinguish children with KD from children with other febrile illnesses [febrile controls (FCs)] to allow prompt treatment. Significant independent predictors were identified by applying multivariate logistic regression analyses. A new diagnostic model was constructed and compared with that from diagnostic tests created by other scholars. Data from 10,367 patients were collected. Twelve independent predictors were determined: a lower percentage of monocytes (%MON), phosphorus, uric acid (UA), percentage of lymphocyte (%LYM), prealbumin, serum chloride, lactic dehydrogenase (LDH), aspartate aminotransferase: alanine transaminase (AST: ALT) ratio, higher level of globulin, gamma-glutamyl transpeptidase (GGT), platelet count (PLT), and younger age. The AUC, sensitivity, and specificity of the new model for cross-validation of the KD diagnosis was 0.906 ± 0.006, 86.0 ± 0.9%, and 80.5 ± 1.5%, respectively. An equation was presented to assess the risk of KD, which was further validated using KD ( = 5,642) and incomplete KD ( = 809) cohorts. Children with KD could be distinguished effectively from children with other febrile illnesses by documenting the age and measuring the level of %MON, phosphorus, UA, globulin, %LYM, prealbumin, GGT, AST:ALT ratio, serum chloride, LDH, and PLT. This new diagnostic model could be employed for the accurate diagnosis of KD.

摘要

川崎病(KD)是婴幼儿中最常见的血管炎之一,已成为儿童后天性心脏病的主要病因。KD的延迟诊断可导致严重的心血管并发症。我们试图创建一种诊断模型,以帮助区分KD患儿与其他发热性疾病患儿[发热对照(FCs)],以便及时治疗。通过应用多变量逻辑回归分析确定了显著的独立预测因素。构建了一种新的诊断模型,并与其他学者创建的诊断测试模型进行了比较。收集了10367例患者的数据。确定了12个独立预测因素:单核细胞百分比(%MON)、磷、尿酸(UA)、淋巴细胞百分比(%LYM)、前白蛋白、血清氯(氯)、乳酸脱氢酶(LDH)、天冬氨酸转氨酶:丙氨酸转氨酶(AST:ALT)比值、球蛋白水平升高、γ-谷氨酰转肽酶(GGT)、血小板计数(PLT)和年龄较小。KD诊断交叉验证新模型的曲线下面积(AUC)、敏感性和特异性分别为0.906±0.006、86.0±0.9%和80.5±1.5%。提出了一个评估KD风险的方程,并使用KD队列(n = 5642)和不完全KD队列(n = 809)进一步验证。通过记录年龄并测量%MON、磷、UA、球蛋白、%LYM、前白蛋白、GGT、AST:ALT比值、血清氯、LDH和PLT水平,可以有效区分KD患儿与其他发热性疾病患儿。这种新的诊断模型可用于KD的准确诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf96/7693557/9e8886e281d4/fped-08-533759-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验