Suppr超能文献

用于鉴别川崎病与脓毒症的机器学习模型。

A machine learning model for distinguishing Kawasaki disease from sepsis.

机构信息

Department of Gastroenterology, Children's Hospital of Anhui Medical University, The Fifth Clinical Medical College of Anhui Medical University, Hefei, 230000, Anhui, China.

Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, Anhui, China.

出版信息

Sci Rep. 2023 Aug 2;13(1):12553. doi: 10.1038/s41598-023-39745-8.

Abstract

KD is an acute systemic vasculitis that most commonly affects children under 5 years old. Sepsis is a systemic inflammatory response syndrome caused by infection. The main clinical manifestations of both are fever, and laboratory tests include elevated WBC count, C-reactive protein, and procalcitonin. However, the two treatments are very different. Therefore, it is necessary to establish a dynamic nomogram based on clinical data to help clinicians make timely diagnoses and decision-making. In this study, we analyzed 299 KD patients and 309 sepsis patients. We collected patients' age, sex, height, weight, BMI, and 33 biological parameters of a routine blood test. After dividing the patients into a training set and validation set, the least absolute shrinkage and selection operator method, support vector machine and receiver operating characteristic curve were used to select significant factors and construct the nomogram. The performance of the nomogram was evaluated by discrimination and calibration. The decision curve analysis was used to assess the clinical usefulness of the nomogram. This nomogram shows that height, WBC, monocyte, eosinophil, lymphocyte to monocyte count ratio (LMR), PA, GGT and platelet are independent predictors of the KD diagnostic model. The c-index of the nomogram in the training set and validation is 0.926 and 0.878, which describes good discrimination. The nomogram is well calibrated. The decision curve analysis showed that the nomogram has better clinical application value and decision-making assistance ability. The nomogram has good performance of distinguishing KD from sepsis and is helpful for clinical pediatricians to make early clinical decisions.

摘要

KD 是一种急性全身性血管炎,最常影响 5 岁以下儿童。脓毒症是一种由感染引起的全身性炎症反应综合征。两者的主要临床表现均为发热,实验室检查包括白细胞计数、C 反应蛋白和降钙素原升高。然而,两种疾病的治疗方法却截然不同。因此,有必要基于临床数据建立一个动态的列线图,以帮助临床医生及时做出诊断和决策。在这项研究中,我们分析了 299 例 KD 患者和 309 例脓毒症患者。我们收集了患者的年龄、性别、身高、体重、BMI 以及常规血液检查的 33 项生物参数。将患者分为训练集和验证集后,采用最小绝对收缩和选择算子法、支持向量机和受试者工作特征曲线筛选出显著因素,并构建列线图。通过判别和校准评估列线图的性能。决策曲线分析用于评估列线图的临床实用性。该列线图表明,身高、白细胞、单核细胞、嗜酸性粒细胞、淋巴细胞与单核细胞计数比值(LMR)、PA、GGT 和血小板是 KD 诊断模型的独立预测因子。训练集和验证集的列线图 c 指数分别为 0.926 和 0.878,表明具有良好的判别能力。该列线图校准良好。决策曲线分析表明,该列线图具有更好的临床应用价值和决策辅助能力。该列线图具有良好的鉴别 KD 与脓毒症的性能,有助于临床儿科医生做出早期临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5f5/10397201/da1b7c059dfd/41598_2023_39745_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验