Suppr超能文献

解读微小RNA在芥子气诱导毒性中的作用。

Deciphering the role of microRNAs in mustard gas-induced toxicity.

作者信息

Mishra Neha, Raina Komal, Agarwal Rajesh

机构信息

Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, Colorado.

Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota.

出版信息

Ann N Y Acad Sci. 2021 May;1491(1):25-41. doi: 10.1111/nyas.14539. Epub 2020 Dec 10.

Abstract

Mustard gas (sulfur mustard, SM), a highly vesicating chemical warfare agent, was first deployed in warfare in 1917 and recently during the Iraq-Iran war (1980s) and Syrian conflicts (2000s); however, the threat of exposure from stockpiles and old artillery shells still looms large. Whereas research has been long ongoing on SM-induced toxicity, delineating the precise molecular pathways is still an ongoing area of investigation; thus, it is important to attempt novel approaches to decipher these mechanisms and develop a detailed network of pathways associated with SM-induced toxicity. One such avenue is exploring the role of microRNAs (miRNAs) in SM-induced toxicity. Recent research on the regulatory role of miRNAs provides important results to fill in the gaps in SM toxicity-associated mechanisms. In addition, differentially expressed miRNAs can also be used as diagnostic markers to determine the extent of toxicity in exposed individuals. Thus, in our review, we have summarized the studies conducted so far in cellular and animal models, including human subjects, on the expression profiles and roles of miRNAs in SM- and/or SM analog-induced toxicity. Further detailed research in this area will guide us in devising preventive strategies, diagnostic tools, and therapeutic interventions against SM-induced toxicity.

摘要

芥子气(硫芥气,SM)是一种具有高度致疱性的化学战剂,于1917年首次在战争中使用,最近在两伊战争(20世纪80年代)和叙利亚冲突(21世纪初)中也有使用;然而,来自库存和旧炮弹的接触威胁仍然很大。尽管对芥子气诱导的毒性的研究一直在进行,但确定精确的分子途径仍是一个正在进行的研究领域;因此,尝试采用新方法来解读这些机制并建立与芥子气诱导的毒性相关的详细途径网络非常重要。其中一条途径是探索微小RNA(miRNA)在芥子气诱导的毒性中的作用。最近关于miRNA调节作用的研究为填补芥子气毒性相关机制的空白提供了重要结果。此外,差异表达的miRNA还可作为诊断标志物来确定暴露个体的毒性程度。因此,在我们的综述中,我们总结了迄今为止在细胞和动物模型(包括人类受试者)中进行的关于miRNA在芥子气和/或芥子气类似物诱导的毒性中的表达谱和作用的研究。该领域进一步的详细研究将指导我们制定针对芥子气诱导的毒性的预防策略、诊断工具和治疗干预措施。

相似文献

1
Deciphering the role of microRNAs in mustard gas-induced toxicity.
Ann N Y Acad Sci. 2021 May;1491(1):25-41. doi: 10.1111/nyas.14539. Epub 2020 Dec 10.
2
Research models of sulfur mustard- and nitrogen mustard-induced ocular injuries and potential therapeutics.
Exp Eye Res. 2022 Oct;223:109209. doi: 10.1016/j.exer.2022.109209. Epub 2022 Aug 9.
3
Drde-07: a possible antidote for sulphur mustard toxicity.
Cell Mol Biol (Noisy-le-grand). 2010 Sep 11;56 Suppl:OL1334-40.
4
Catalytic antioxidant AEOL 10150 treatment ameliorates sulfur mustard analog 2-chloroethyl ethyl sulfide-associated cutaneous toxic effects.
Free Radic Biol Med. 2014 Jul;72:285-95. doi: 10.1016/j.freeradbiomed.2014.04.022. Epub 2014 May 9.
5
Historical perspective on effects and treatment of sulfur mustard injuries.
Chem Biol Interact. 2013 Dec 5;206(3):512-22. doi: 10.1016/j.cbi.2013.06.013. Epub 2013 Jun 28.
6
Alteration of miRNA expression in a sulfur mustard resistant cell line.
Toxicol Lett. 2018 Sep 1;293:38-44. doi: 10.1016/j.toxlet.2017.08.014. Epub 2017 Aug 18.
8
NAD in sulfur mustard toxicity.
Toxicol Lett. 2020 May 15;324:95-103. doi: 10.1016/j.toxlet.2020.01.024. Epub 2020 Feb 1.
9
Sulfur mustard toxicity: history, chemistry, pharmacokinetics, and pharmacodynamics.
Crit Rev Toxicol. 2011 May;41(5):384-403. doi: 10.3109/10408444.2010.541224. Epub 2011 Feb 18.
10
A clinicopathological approach to sulfur mustard-induced organ complications: a major review.
Cutan Ocul Toxicol. 2013 Oct;32(4):304-24. doi: 10.3109/15569527.2013.781615. Epub 2013 Apr 16.

本文引用的文献

1
MicroRNA-mediated inflammation and coagulation effects in rats exposed to an inhaled analog of sulfur mustard.
Ann N Y Acad Sci. 2020 Nov;1479(1):148-158. doi: 10.1111/nyas.14416. Epub 2020 Jun 29.
3
ADH7, miR-3065 and LINC01133 are associated with cervical cancer progression in different age groups.
Oncol Lett. 2020 Mar;19(3):2326-2338. doi: 10.3892/ol.2020.11348. Epub 2020 Jan 24.
5
microRNAs: Potential biomarkers of toxicity: A special issue of the journal .
Toxicol Rep. 2020 Jan 13;7:198-199. doi: 10.1016/j.toxrep.2020.01.001. eCollection 2020.
6
Circular RNA 0007255 regulates the progression of breast cancer through miR-335-5p/SIX2 axis.
Thorac Cancer. 2020 Mar;11(3):619-630. doi: 10.1111/1759-7714.13306. Epub 2020 Jan 21.
7
miRNAs as Influencers of Cell-Cell Communication in Tumor Microenvironment.
Cells. 2020 Jan 15;9(1):220. doi: 10.3390/cells9010220.
8
MicroRNA-129-3p functions as a tumor suppressor in serous ovarian cancer by targeting BZW1.
Int J Clin Exp Pathol. 2018 Dec 1;11(12):5901-5908. eCollection 2018.
9
MiR-132 controls pancreatic beta cell proliferation and survival through Pten/Akt/Foxo3 signaling.
Mol Metab. 2020 Jan;31:150-162. doi: 10.1016/j.molmet.2019.11.012. Epub 2019 Nov 22.
10
MicroRNA-129-5p suppresses nasopharyngeal carcinoma lymphangiogenesis and lymph node metastasis by targeting ZIC2.
Cell Oncol (Dordr). 2020 Apr;43(2):249-261. doi: 10.1007/s13402-019-00485-5. Epub 2019 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验