Santanni Fabio, Albino Andrea, Atzori Matteo, Ranieri Davide, Salvadori Enrico, Chiesa Mario, Lunghi Alessandro, Bencini Andrea, Sorace Lorenzo, Totti Federico, Sessoli Roberta
Dipartimento di Chimica "Ugo Schiff" & INSTM RU, Università degli Studi di Firenze, Via della Lastruccia 3, I50019 Sesto Fiorentino, Firenze) Italy.
Laboratoire National des Champs Magnétiques Intenses (LNCMI), Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, CNRS, F38043 Grenoble, France.
Inorg Chem. 2021 Jan 4;60(1):140-151. doi: 10.1021/acs.inorgchem.0c02573. Epub 2020 Dec 11.
The selection of molecular spin qubits with a long coherence time, , is a central task for implementing molecule-based quantum technologies. Even if a sufficiently long can be achieved through an efficient synthetic strategy and experimental measurement procedures, many factors contributing to the loss of coherence still need to be thoroughly investigated and understood. Vibrational properties and nuclear spins of hydrogens are two of them. The former plays a paramount role, but a detailed theoretical investigation aimed at studying their effects on the spin dynamics of molecular complexes such as the benchmark phthalocyanine (Pc) is still missing, whereas the effect of the latter deserves to be examined in detail for such a class of compounds. In this work, we adopted a combined theoretical and experimental approach to investigate the relaxation properties of classical [Cu(Pc)] and a Cu complex based on the ligand tetrakis(thiadiazole)porphyrazine (HTTDPz), characterized by a hydrogen-free molecular structure. Systematic calculations of molecular vibrations exemplify the effect of normal modes on the spin-lattice relaxation process, unveiling a different contribution to depending on the symmetry of normal modes. Moreover, we observed that an appreciable enhancement could be achieved by removing hydrogens from the ligand.
选择具有长相干时间的分子自旋量子比特是实现基于分子的量子技术的核心任务。即便通过高效的合成策略和实验测量程序能够实现足够长的相干时间,但许多导致相干性丧失的因素仍需深入研究和理解。氢的振动特性和核自旋就是其中两个因素。前者起着至关重要的作用,但针对诸如基准酞菁(Pc)等分子复合物的自旋动力学,旨在研究它们影响的详细理论研究仍付诸阙如,而对于此类化合物,后者的影响值得详细研究。在这项工作中,我们采用理论与实验相结合的方法,研究了经典的[Cu(Pc)]以及基于配体四(噻二唑)卟嗪(HTTDPz)的铜配合物的弛豫特性,该配合物具有无氢分子结构。分子振动的系统计算例证了简正模式对自旋 - 晶格弛豫过程的影响,揭示了根据简正模式的对称性对相干时间的不同贡献。此外,我们观察到通过从配体中去除氢可以实现可观的相干时间增强。