Suppr超能文献

衬底上分子量子比特中自旋-声子耦合的有害增加

Detrimental Increase of Spin-Phonon Coupling in Molecular Qubits on Substrates.

作者信息

Mullin Kathleen R, Greer Rianna B, Waters Michael J, Amdur M Jeremy, Sun Lei, Freedman Danna E, Rondinelli James M

机构信息

Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

出版信息

ACS Appl Mater Interfaces. 2024 Jul 31;16(30):40160-40169. doi: 10.1021/acsami.4c05728. Epub 2024 Jul 17.

Abstract

Molecular qubits are a promising platform for quantum information systems. Although single molecule and ensemble studies have assessed the performance of = 1/2 molecules, it is understood that to function in devices, regular arrays of addressable qubits supported by a substrate are needed. The substrate imposes mechanical and electronic boundary conditions on the molecule; however, the impact of these effects on spin-lattice relaxation times is not well understood. Here we perform electronic structure calculations to assess the effects of a graphene (C) substrate on the molecular qubit copper phthalocyanine (CuPc). We use a progressive Hessian approach to efficiently calculate and separate the substrate contributions. We also use a simple thermal model to predict the impact of these changes on the spin-phonon coupling from 0 to 200 K. Further analysis of the individual vibrational modes with and without C shows that an overall increase in SPC between the vibrations modes of CuPc with the surface reduces the spin-lattice relaxation time . We explain these changes by examining how the substrate lifts symmetries of CuPc in the absorbed configuration. Our work shows that a surface can have a large unintentional impact on SPC and that ways to reduce this coupling need to be found to fully exploit arrays of molecular qubits in device architectures.

摘要

分子量子比特是量子信息系统中一个很有前景的平台。尽管单分子和系综研究已经评估了自旋为1/2的分子的性能,但据了解,要在器件中发挥作用,需要由衬底支持的可寻址量子比特的规则阵列。衬底对分子施加机械和电子边界条件;然而,这些效应对自旋晶格弛豫时间的影响尚未得到很好的理解。在这里,我们进行电子结构计算,以评估石墨烯(C)衬底对分子量子比特铜酞菁(CuPc)的影响。我们使用渐进海森矩阵方法来有效地计算和分离衬底的贡献。我们还使用一个简单的热模型来预测这些变化在0到200K范围内对自旋-声子耦合的影响。对有和没有C时的各个振动模式的进一步分析表明,CuPc与表面之间的振动模式之间自旋-声子耦合(SPC)的总体增加会缩短自旋晶格弛豫时间。我们通过研究衬底如何提升吸附构型中CuPc的对称性来解释这些变化。我们的工作表明,表面可能会对SPC产生很大的意外影响,并且需要找到减少这种耦合的方法,以便在器件架构中充分利用分子量子比特阵列。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验