Suppr超能文献

人工智能在肿瘤正电子发射断层成像中的应用。

Artificial intelligence applications for oncological positron emission tomography imaging.

机构信息

Shanxi Medical University, Taiyuan 030009, PR China; Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China; Collaborative Innovation Center for Molecular Imaging, Taiyuan 030001, PR China.

Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China; Collaborative Innovation Center for Molecular Imaging, Taiyuan 030001, PR China; Cellular Physiology Key Laboratory of Ministry of Education, Translational Medicine Research Center, Shanxi Medical University, Taiyuan 030001, PR China.

出版信息

Eur J Radiol. 2021 Jan;134:109448. doi: 10.1016/j.ejrad.2020.109448. Epub 2020 Nov 30.

Abstract

Positron emission tomography (PET), a functional and dynamic molecular imaging technique, is generally used to reveal tumors' biological behavior. Radiomics allows a high-throughput extraction of multiple features from images with artificial intelligence (AI) approaches and develops rapidly worldwide. Quantitative and objective features of medical images have been explored to recognize reliable biomarkers, with the development of PET radiomics. This paper will review the current clinical exploration of PET-based classical machine learning and deep learning methods, including disease diagnosis, the prediction of histological subtype, gene mutation status, tumor metastasis, tumor relapse, therapeutic side effects, therapeutic intervention and evaluation of prognosis. The applications of AI in oncology will be mainly discussed. The image-guided biopsy or surgery assisted by PET-based AI will be introduced as well. This paper aims to present the applications and methods of AI for PET imaging, which may offer important details for further clinical studies. Relevant precautions are put forward and future research directions are suggested.

摘要

正电子发射断层扫描(PET)是一种功能和动态的分子成像技术,通常用于揭示肿瘤的生物学行为。放射组学允许使用人工智能(AI)方法从图像中进行高通量的特征提取,并且在全球范围内迅速发展。随着 PET 放射组学的发展,已经探索了医学图像的定量和客观特征,以识别可靠的生物标志物。本文将综述目前基于 PET 的经典机器学习和深度学习方法的临床探索,包括疾病诊断、组织亚型预测、基因突变状态、肿瘤转移、肿瘤复发、治疗副作用、治疗干预和预后评估。主要讨论 AI 在肿瘤学中的应用。还将介绍基于 PET 的 AI 引导的活检或手术。本文旨在介绍 AI 在 PET 成像中的应用和方法,这可能为进一步的临床研究提供重要细节。提出了相关注意事项,并建议了未来的研究方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验