Suppr超能文献

人工智能和深度学习在 PET 和 SPECT 成像中的应用前景。

The promise of artificial intelligence and deep learning in PET and SPECT imaging.

机构信息

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland.

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland; Geneva University Neurocenter, Geneva University, CH-1205 Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, Netherlands; Department of Nuclear Medicine, University of Southern Denmark, 500 Odense, Denmark.

出版信息

Phys Med. 2021 Mar;83:122-137. doi: 10.1016/j.ejmp.2021.03.008. Epub 2021 Mar 22.

Abstract

This review sets out to discuss the foremost applications of artificial intelligence (AI), particularly deep learning (DL) algorithms, in single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging. To this end, the underlying limitations/challenges of these imaging modalities are briefly discussed followed by a description of AI-based solutions proposed to address these challenges. This review will focus on mainstream generic fields, including instrumentation, image acquisition/formation, image reconstruction and low-dose/fast scanning, quantitative imaging, image interpretation (computer-aided detection/diagnosis/prognosis), as well as internal radiation dosimetry. A brief description of deep learning algorithms and the fundamental architectures used for these applications is also provided. Finally, the challenges, opportunities, and barriers to full-scale validation and adoption of AI-based solutions for improvement of image quality and quantitative accuracy of PET and SPECT images in the clinic are discussed.

摘要

这篇综述旨在讨论人工智能(AI),特别是深度学习(DL)算法在单光子发射计算机断层扫描(SPECT)和正电子发射断层扫描(PET)成像中的主要应用。为此,简要讨论了这些成像方式的基本局限性/挑战,然后描述了为解决这些挑战而提出的基于 AI 的解决方案。本综述将重点关注主流通用领域,包括仪器仪表、图像采集/形成、图像重建和低剂量/快速扫描、定量成像、图像解释(计算机辅助检测/诊断/预后)以及内部辐射剂量测定。还简要介绍了深度学习算法和用于这些应用的基本架构。最后,讨论了在临床上全面验证和采用基于 AI 的解决方案以提高 PET 和 SPECT 图像的质量和定量准确性所面临的挑战、机遇和障碍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验