Suppr超能文献

基于先进深度学习技术的定量分子正电子发射断层成像。

Quantitative Molecular Positron Emission Tomography Imaging Using Advanced Deep Learning Techniques.

机构信息

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211 Geneva, Switzerland; email:

Geneva Neuroscience Centre, University of Geneva, 1205 Geneva, Switzerland.

出版信息

Annu Rev Biomed Eng. 2021 Jul 13;23:249-276. doi: 10.1146/annurev-bioeng-082420-020343. Epub 2021 Apr 2.

Abstract

The widespread availability of high-performance computing and the popularity of artificial intelligence (AI) with machine learning and deep learning (ML/DL) algorithms at the helm have stimulated the development of many applications involving the use of AI-based techniques in molecular imaging research. Applications reported in the literature encompass various areas, including innovative design concepts in positron emission tomography (PET) instrumentation, quantitative image reconstruction and analysis techniques, computer-aided detection and diagnosis, as well as modeling and prediction of outcomes. This review reflects the tremendous interest in quantitative molecular imaging using ML/DL techniques during the past decade, ranging from the basic principles of ML/DL techniques to the various steps required for obtaining quantitatively accurate PET data, including algorithms used to denoise or correct for physical degrading factors as well as to quantify tracer uptake and metabolic tumor volume for treatment monitoring or radiation therapy treatment planning and response prediction.This review also addresses future opportunities and current challenges facing the adoption of ML/DL approaches and their role in multimodality imaging.

摘要

高性能计算的广泛应用以及人工智能(AI)的普及,尤其是机器学习和深度学习(ML/DL)算法,刺激了许多涉及分子影像研究中使用基于 AI 的技术的应用的发展。文献中报道的应用涵盖了各个领域,包括正电子发射断层扫描(PET)仪器的创新设计概念、定量图像重建和分析技术、计算机辅助检测和诊断,以及结果的建模和预测。这篇综述反映了过去十年中使用 ML/DL 技术进行定量分子成像的巨大兴趣,从 ML/DL 技术的基本原理到获得定量准确的 PET 数据所需的各个步骤,包括用于去噪或校正物理退化因素以及量化示踪剂摄取和代谢肿瘤体积以进行治疗监测或放射治疗计划和反应预测的算法。这篇综述还探讨了采用 ML/DL 方法所面临的未来机遇和当前挑战,以及它们在多模态成像中的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验