Suppr超能文献

估计具有二元因变量的面板数据中的组固定效应:在稀有事件数据中线性概率模型如何优于逻辑回归。

Estimating group fixed effects in panel data with a binary dependent variable: How the LPM outperforms logistic regression in rare events data.

作者信息

Timoneda Joan C

机构信息

Purdue University Department of Political Science 2230 Beering Hall 100 University St. West Lafayette, IN, 47907, USA.

出版信息

Soc Sci Res. 2021 Jan;93:102486. doi: 10.1016/j.ssresearch.2020.102486. Epub 2020 Oct 29.

Abstract

Estimating fixed effects models can be challenging with rare events data. Researchers often face difficult trade-offs when selecting between the Linear Probability Model (LPM), logistic regression with group intercepts and the conditional logit. In this paper, I survey these tradeoffs and argue that, in fact, the LPM with fixed effects produces more accurate estimates and predicted probabilities than maximum likelihood specifications when the dependent variable has less than 25 percent of ones. I use Monte Carlo simulations to show when the LPM with fixed effects should be preferred. I perform these simulations on common time-series cross-sectional (TSCS) data structures found in the literature as well as big data. This paper provides clarity around fixed effects models in TSCS data and a novel technique to identify which one to use as a function of the frequency of events in y.

摘要

对于稀有事件数据,估计固定效应模型可能具有挑战性。研究人员在选择线性概率模型(LPM)、具有组截距的逻辑回归和条件logit之间时,常常面临艰难的权衡。在本文中,我探讨了这些权衡,并认为实际上,当因变量中取值为1的比例小于25%时,具有固定效应的LPM比最大似然估计规格能产生更准确的估计值和预测概率。我使用蒙特卡洛模拟来展示何时应优先选择具有固定效应的LPM。我在文献中常见的时间序列横截面(TSCS)数据结构以及大数据上进行了这些模拟。本文阐明了TSCS数据中的固定效应模型,并提供了一种新颖的技术,可根据y中事件的频率来确定应使用哪种模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验