Xia Pengkun, Zuo Jiawei, Paudel Pravin, Choi Shinhyuk, Chen Xiahui, Rahman Laskar Md Ashiqur, Bai Jing, Song Weisi, Im JongOne, Wang Chao
School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA; Center for Photonics Innovation, Arizona State University, Tempe, AZ, USA; Biodesign Center for Molecular Design & Biomimetics, Arizona State University, Tempe, AZ, USA.
School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA; Center for Photonics Innovation, Arizona State University, Tempe, AZ, USA.
Biosens Bioelectron. 2021 Feb 15;174:112829. doi: 10.1016/j.bios.2020.112829. Epub 2020 Nov 27.
Solid-state nanopores have broad applications from single-molecule biosensing to diagnostics and sequencing. The high capacitive noise from conventionally used conductive silicon substrates, however, has seriously limited both their sensing accuracy and recording speed. A new approach is proposed here for forming nanopore membranes on insulating sapphire wafers to promote low-noise nanopore sensing. Anisotropic wet etching of sapphire through micro-patterned triangular masks is used to demonstrate the feasibility of scalable formation of small (<25 μm) membranes with a size deviation of less than 7 μm over two 2-inch wafers. For validation, a sapphire-supported (SaS) nanopore chip with a 100 times larger membrane area than conventional nanopores was tested, which showed 130 times smaller capacitance (10 pF) and 2.6 times smaller root-mean-square (RMS) noise current (18-21 pA over 100 kHz bandwidth, with 50-150 mV bias) when compared to a silicon-supported (SiS) nanopore (~1.3 nF, and 46-51 pA RMS noise). Tested with 1k base-pair double-stranded DNA, the SaS nanopore enabled sensing at microsecond speed with a signal-to-noise ratio of 21, compared to 11 from a SiS nanopore. This SaS nanopore presents a manufacturable nanoelectronic platform feasible for high-speed and low-noise sensing of a variety of biomolecules.
固态纳米孔在从单分子生物传感到诊断和测序等领域有着广泛的应用。然而,传统使用的导电硅基片产生的高电容噪声严重限制了其传感精度和记录速度。本文提出了一种在绝缘蓝宝石晶片上形成纳米孔膜的新方法,以促进低噪声纳米孔传感。通过微图案化三角形掩膜对蓝宝石进行各向异性湿法蚀刻,证明了在两个2英寸晶片上可扩展形成尺寸小于25μm且尺寸偏差小于7μm的小膜的可行性。为了进行验证,测试了一种蓝宝石支撑(SaS)纳米孔芯片,其膜面积比传统纳米孔大100倍,与硅支撑(SiS)纳米孔(约1.3nF,均方根(RMS)噪声为46 - 51pA)相比,其电容小130倍(10pF),RMS噪声电流小2.6倍(在100kHz带宽、50 - 150mV偏压下为18 - 21pA)。用1k碱基对的双链DNA进行测试时,SaS纳米孔能够以微秒速度进行传感,信噪比为21,而SiS纳米孔的信噪比为11。这种SaS纳米孔提供了一个可制造的纳米电子平台,适用于对多种生物分子进行高速、低噪声传感。