Suppr超能文献

通过优化墙体围护结构的设计来提升建筑的热性能,降低空调成本。

Strategic design of wall envelopes for the enhancement of building thermal performance at reduced air-conditioning costs.

机构信息

Department of Thermal and Energy, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India.

Department of Mechanical Engineering, Sasi Institute of Technology and Engineering Tadepalligudem, 534101, Andhra Pradesh, India.

出版信息

Environ Res. 2021 Feb;193:110577. doi: 10.1016/j.envres.2020.110577. Epub 2020 Dec 10.

Abstract

A strategy is proposed for the design of wall envelopes to improve unsteady thermal performance in non-air-conditioned buildings and to reduce energy costs in air-conditioned buildings. The thermophysical properties of building materials (e.g., burnt bricks, mud bricks, laterite stone, cinder concrete, and expanded polystyrene) were measured experimentally using a thermal analyzer. A total of 28 combinations for composite walls were designed with expanded polystyrene as an insulation material based on seven criteria and were subjected to 8 different external surface heat transfer coefficients, which were tested for unsteady thermal performance parameters and air-conditioning cost-saving potential. In this paper, unsteady thermal transmittance obtained from admittance method has been employed to compute cost saving potential of air-conditioning for the various wall envelopes. The use of C-H design at a 2 m/s wind speed was found to increase the decrement lag of burnt brick, mud brick, laterite stone, and cinder concrete composite wall envelopes by 48.1%, 49.0%, 59.5%, and 47.0%, respectively, relative to the common wall design (C-H) in non-air-conditioned buildings. The laterite with a C-H design offers the highest annual energy cost savings (1.71 $/m at 2 m/s), the highest life cycle cost savings (18.32 $/m at 2 m/s), and the lowest payback period (4.03 yrs at 2 m/s) in all tested building materials for air-conditioned buildings. The overall results of this study are expected to open new paths to deliver simple design strategies for energy-efficient buildings.

摘要

提出了一种设计墙体围护结构的策略,以提高非空调建筑的非稳态热性能,并降低空调建筑的能源成本。使用热分析仪对建筑材料(如烧制砖、泥砖、红土石、炉渣混凝土和膨胀聚苯乙烯)的热物理性能进行了实验测量。总共设计了 28 种复合墙,以膨胀聚苯乙烯为隔热材料,基于七个标准,并承受 8 种不同的外部表面传热系数,这些组合都经过了非稳态热性能参数和空调节省成本潜力的测试。在本文中,使用导纳法获得的非稳态热透射率来计算各种墙体围护结构的空调节省成本潜力。发现使用 C-H 设计在 2 m/s 的风速下,与非空调建筑中的普通墙体设计(C-H)相比,烧制砖、泥砖、红土石和炉渣混凝土复合墙体围护结构的衰减滞后分别增加了 48.1%、49.0%、59.5%和 47.0%。对于空调建筑,采用 C-H 设计的红土具有最高的年能源成本节约(2 m/s 时为 1.71 美元/平方米)、最高的生命周期成本节约(2 m/s 时为 18.32 美元/平方米)和最低的投资回收期(2 m/s 时为 4.03 年)。本研究的总体结果有望为提供节能建筑的简单设计策略开辟新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验