Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Fédérale de Lausanne; Institute of Earth Sciences, University of Lausanne, CH-1015.
Institute of Earth Sciences, University of Lausanne, CH-1015.
J Vis Exp. 2020 Nov 25(165). doi: 10.3791/60701.
Understanding the transport, dispersion and deposition of microorganisms in porous media is a complex scientific task comprising topics as diverse as hydrodynamics, ecology and environmental engineering. Modeling bacterial transport in porous environments at different spatial scales is critical to better predict the consequences of bacterial transport, yet current models often fail to up-scale from laboratory to field conditions. Here, we introduce experimental tools to study bacterial transport in porous media at two spatial scales. The aim of these tools is to obtain macroscopic observables (such as breakthrough curves or deposition profiles) of bacteria injected into transparent porous matrices. At the small scale (10-1000 µm), microfluidic devices are combined with optical video-microscopy and image processing to obtain breakthrough curves and, at the same time, to track individual bacterial cells at the pore scale. At larger scale, flow cytometry is combined with a self-made robotic dispenser to obtain breakthrough curves. We illustrate the utility of these tools to better understand how bacteria are transported in complex porous media such as the hyporheic zone of streams. As these tools provide simultaneous measurements across scales, they pave the way for mechanism-based models, critically important for upscaling. Application of these tools may not only contribute to the development of novel bioremediation applications but also shed new light on the ecological strategies of microorganisms colonizing porous substrates.
理解微生物在多孔介质中的迁移、扩散和沉积是一项复杂的科学任务,涉及水力学、生态学和环境工程等多个领域。在不同的空间尺度上模拟多孔环境中的细菌迁移对于更好地预测细菌迁移的后果至关重要,但目前的模型往往无法将实验室结果外推到野外条件。在这里,我们引入了实验工具来研究多孔介质中细菌在两个空间尺度上的迁移。这些工具的目的是获得注入透明多孔基质中的细菌的宏观可观察量(如突破曲线或沉积分布)。在小尺度(10-1000 µm)上,微流控装置与光学视频显微镜和图像处理相结合,以获得突破曲线,同时在孔隙尺度上跟踪单个细菌细胞。在较大的尺度上,流式细胞术与自制的机器人分配器结合使用,以获得突破曲线。我们说明了这些工具的实用性,以更好地了解细菌在复杂多孔介质(如溪流的底栖区)中的迁移方式。由于这些工具在多个尺度上提供了同时测量,因此为基于机制的模型铺平了道路,这对于外推至关重要。这些工具的应用不仅有助于开发新型生物修复应用,而且还为研究定居在多孔基质中的微生物的生态策略提供了新的思路。