Drabik Gabriela, Szklarzewicz Janusz, Radoń Mariusz
Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland.
Phys Chem Chem Phys. 2021 Jan 6;23(1):151-172. doi: 10.1039/d0cp04727a.
We benchmark the accuracy of quantum-chemical methods, including wave function theory methods [coupled cluster theory at the CCSD(T) level, multiconfigurational perturbation-theory (CASPT2, NEVPT2) and internally contracted multireference configuration interaction (MRCI)] and 30 density functional theory (DFT) approximations, in reproducing the spin-state splittings of metallocenes. The reference values of the electronic energy differences are derived from the experimental spin-crossover enthalpy for manganocene and the spectral data of singlet-triplet transitions for ruthenocene, ferrocene, and cobaltocenium. For ferrocene and cobaltocenium we revise the previous experimental interpretations regarding the lowest triplet energy; our argument is based on the comparison with the lowest singlet excitation energy and herein reported, carefully determined absorption spectrum of ferrocene. When deriving vertical energies from the experimental band maxima, we go beyond the routine vertical energy approximation by introducing vibronic corrections based on simulated vibrational envelopes. The benchmarking result confirms the high accuracy of the CCSD(T) method (in particular, for UCCSD(T) based on Hartree-Fock orbitals we find for our dataset: maximum error 0.12 eV, weighted mean absolute error 0.07 eV, weighted mean signed error 0.01 eV). The high accuracy of the single-reference method is corroborated by the analysis of a multiconfigurational character of the complete active space wave function for the triplet state of ferrocene. On the DFT side, our results confirm the non-universality problem with approximate functionals. The present study is an important step toward establishing an extensive and representative benchmark set of experiment-derived spin-state energetics for transition metal complexes.
我们对量子化学方法的准确性进行了基准测试,这些方法包括波函数理论方法[CCSD(T)水平的耦合簇理论、多组态微扰理论(CASPT2、NEVPT2)以及内收缩多参考组态相互作用(MRCI)]和30种密度泛函理论(DFT)近似方法,以再现金属茂的自旋态分裂。电子能量差的参考值源自锰茂的实验自旋交叉焓以及钌茂、二茂铁和钴茂的单重态-三重态跃迁的光谱数据。对于二茂铁和钴茂,我们修正了先前关于最低三重态能量的实验解释;我们的论据基于与最低单重态激发能的比较以及本文报道的经过仔细测定的二茂铁吸收光谱。在从实验带最大值推导垂直能量时,我们通过基于模拟振动包络引入振转修正,超越了常规的垂直能量近似。基准测试结果证实了CCSD(T)方法的高精度(特别是对于基于哈特里-福克轨道的UCCSD(T),我们在数据集中发现:最大误差0.12 eV,加权平均绝对误差0.07 eV,加权平均符号误差0.01 eV)。对二茂铁三重态的完全活性空间波函数的多组态特征分析证实了单参考方法的高精度。在DFT方面,我们的结果证实了近似泛函存在的非通用性问题。本研究是朝着建立一套广泛且具有代表性的、基于实验的过渡金属配合物自旋态能量基准集迈出的重要一步。